دانلود رایگان ترجمه مقاله عملگرهای انتگرال چاکوئت پیوسته القا شده و کاربرد آن ها در تصمیم گیری گروهی – الزویر ۲۰۱۴
دانلود رایگان مقاله انگلیسی عملگرهای انتگرال چاکوئت پیوسته القا شده و کاربرد آن ها در تصمیم گیری گروهی به همراه ترجمه فارسی
عنوان فارسی مقاله: | عملگرهای انتگرال چاکوئت پیوسته القا شده و کاربرد آن ها در تصمیم گیری گروهی |
عنوان انگلیسی مقاله: | Induced continuous Choquet integral operators and their application to group decision making |
رشته های مرتبط: | مهندسی صنایع، بهینه سازی سیستم ها، برنامه ریزی و تحلیل سیستم |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله عالی میباشد |
توضیحات | ترجمه بخش ۱ موجود نیست |
نشریه | الزویر (Elsevier) |
مجله | کامپیوتر و مهندسی صنایع (Computers & Industrial Engineering) |
کد محصول | F96 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات مهندسی صنایع |
بخشی از ترجمه فارسی: چکیده |
بخشی از مقاله انگلیسی: abstract With respect to multi-attribute group decision making, in this study two induced continuous Choquet integral operators named as the induced continuous Choquet weighted averaging (ICCWA) operator and the induced continuous Choquet geometric mean (ICCGM) operator are defined, which reflect the interactive characteristics between elements. Meantime, some associated desirable properties are studied to provide assurance in applications. In order to globally reflect the interactions between elements, we further define the probabilistic generalized semivalue ICCWA (PGS-ICCWA) operator and the probabilistic generalized semivalue ICCGM (PGS-ICCGM) operator. If the information about the weights of experts and attributes is incompletely known, the models for the optimal fuzzy measures on experts set and on attribute set based on consistency principle and TOPSIS method are respectively established. Moreover, an approach to uncertain multi-attribute group decision making with incomplete weight information and interactive conditions is developed. Finally, a numerical example is provided to illustrate the practicality and feasibility of the developed procedure. 2013 Elsevier Ltd. All rights reserved. 1. Introduction As one of the most important aggregation operators, the ordered weighted averaging (OWA) operator proposed by Yager (1988) has been widely used in many different areas (Calvo, Mayor, & Mesiar, 2002; Liu, 2006; Merigó & Casanovas, 2009; Merigo & Gil-Lafuente, 2009; Merigó, ۲۰۱۰; Wei, 2010a, 2010b; Wei & Zhao, 2012; Xu & Da, 2003; Xu, 2005; Yager & Kacprzyk, 1997; Yager, 2004a, 2004b, 1988; Zhang & Chu, 2009). Since it was first introduced in 1988, many generalized forms have been developed, such as the ordered weighted operator (Chiclana, Herrera, & HerreraViedma, 2001; Xu & Da, 2002, 2003), the continuous ordered weighted operator (Yager, 2004a; Yager & Xu, 2006; Chen, Liu, & Wang, 2008), the generalized OWA operator (Yager, 2004b), the continuous generalized ordered weighted operator (Zhou & Chen, 2011), the induced ordered weighted operator (Yager & Filev, 1999; Yager, 2003; Xu & Da, 2003; Chen, Liu, & Sheng, 2004; Chiclana et al., 2007), the induced generalized ordered weighted operator (Merigo & Gil-Lafuente, 2009; Su, Xia, Chen, & Wang, 2012), the induced continuous ordered weighted operator (Wu, Li, Li, & Duan, 2009; Chen & Zhou, 2011) and the induced generalized continuous OWA operator (Chen & Zhou, 2011). All above mentioned aggregation operators only consider situations where all the elements in a set are independent, i.e., they only consider the addition of the importance of individual elements. However, in many practical situations, the elements are usually correlative, for example, Grabisch (1995, 1996) gave the following classical example: ‘‘We are to evaluate a set of students in relation to three subjects: {mathematics, physics, literature}, we want to give more importance to science-related subjects than to literature, but on the other hand we want to give some advantage to students that are good both in literature and in any of the science-related subjects’’. When there exist inter-dependent or correlative characteristics between attributes or between experts, it is unreasonable to aggregate the alternative values by using additive measures. Fuzzy measures (Sugeno, 1974), as an effective tool to measure the interactions between elements, have been widely used in many different fields, such as game theory and decision making. Corresponding to fuzzy measures, fuzzy integrals are important operators to aggregate fuzzy information. One of the most important fuzzy integrals is the Choquet integral (Choquet, 1953), which has been deeply studied by many scholars. Yager (2003) introduced the Choquet integral operator on fuzzy sets. Tan and Chen (2010), Tan (2011) and Xu (2010) studied some Choquet integral operators on intuitionistic fuzzy sets (IFSs) and on interval-valued intuitionistic fuzzy sets (IVIFSs), respectively. Further, Yager 0360-8352/$ – see front matter 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.cie.2013.11.013 q This manuscript was processed by Area Editor Imed Kacem. ⇑ Corresponding author. Tel.: +86 18254298903. E-mail addresses: mengfanyongtjie@163.com (F. Meng), qiangzhang@bit.edu.cn (Q. Zhang). Computers & Industrial Engineering 68 (2014) 42–۵۳ Contents lists available at ScienceDirect Computers & Industrial Engineering journal homepage: www.elsevier.com/locate/caie (2004b) defined the generalized Choquet OWA operator. Zhou and Chen (2011) introduced the combined continuous generalized Choquet integral aggregation (CC-GCIA) operator. Meanwhile, the application of the Choquet integral is also studied by many researchers (Yager, 2003; Labreuche & Grabisch, 2003; Grabisch & Labreuche, 2008; Tan & Chen, 2010, 2011; Tan, 2011; Xu, 2010). Although many operators based on fuzzy measures have been defined, most of them cannot reflect the global interactions between elements in a set. Further, the research on aggregation operators with fuzzy measures mainly focuses on the decision-making problems with known information about the fuzzy measures on the attribute set and on the expert set. When the weight information is incompletely known, then we need to find some new ways to deal with these issues in which the decision data in question are correlative. To deal with these issues, this study defines two induced continuous Choquet integral operators called the ICCWA and ICCGM operators, which can be seen as an extension of the ICOWA operator (Chen & Zhou, 2011) and the ICOWG operator (Wu et al., 2009), respectively. In order to overall reflect interactions between elements in a set, the probabilistic generalized semivalue ICCWA (PGS-ICCWA) operator and the probabilistic generalized semivalue ICCGM (PGS-ICCGM) operator are presented. As a series of development, the models for the optimal fuzzy measures on the attribute set and on the expert set are established, respectively. Consequently, a procedure to uncertain multi-attribute group decision making is developed to provide a comprehensive and applicable framework. This paper is organized as follows: In Section 2, some basic concepts and definitions are reviewed, which will be used in the following. In Section 3, the ICCWA and ICCGM operators are defined. Meanwhile some desirable properties are studied. In Section 4, the PGS-ICCWA and PGS-ICCGM operators are defined, which do not only globally cover the significance of elements or their ordered positions, but also overall reflect the correlations between them or their ordered positions. Further, an important case of the PGS-ICCWA and PGS-ICCGM operators is studied. In Section 5, based on the Shapley function, consistency principle, and TOPSIS method, the models for the optimal fuzzy measures on the attribute set and on the expert set are established, respectively. Then, an approach to uncertain multi-attribute group decision making with incomplete weight information and interactive conditions is developed. In Section 6, an example is provided to illustrate the developed procedure. The conclusions are made in the last section. |
به درخواست کاربران، ترجمه کامل با فرمت ورد تهیه گردید و آماده خرید اینترنتی میباشد. برای خرید ترجمه کامل عملگرهای انتگرال چاکوئت پیوسته اینجا کلیک نمایید. |
با سلام
سپاسگزارم از اطلاعاتی ک دراختیار کاربران قرار دادید
لطفا در این زمینه
(مقاله انگلیسی عملگرهای انتگرال چاکوئت پیوسته القا شده و کاربرد آن ها در تصمیم گیری گروهی)
یاری کنید
pdf مورد نظر دانلود کردم متاسفانه کامل نیس لطفا راهنمایی کنید
سلام
لطف دارید؛
بله متاسفانه چند بخش این مقاله ترجمه نشده، اما به هر حال شاید مورد استفاده برخی قرار بگیره.
سلام
لطفا دانلود کامل
(عملگرهای انتگرال چاکوئت پیوسته القا شده و کاربرد آن ها در تصمیم گیری گروهی..)
بگذارید
ممنون میشم
سلام
متاسفانه فعلا نسخه کامل این ترجمه در دست نمیباشد.
با سلام ممنون از خدماتتون لطفا PDF کامل از عملگرهای انتگرال چاکوئت…
رو در دسترس قرار بدید ممنون میشم
حتی اگر دانلود رایگان نباشه لطفا در دسترس قرار بدید
سلام
مورد بررسی میشود.