دانلود رایگان ترجمه مقاله تحلیل کمی اسانس های ضروری در عطر با رزولوشن منحنی چند متغیره – الزویر 2011

دانلود رایگان مقاله انگلیسی تجزیه تحلیل کمی اسانس ها در عطر با استفاده از وضوح منحنی چند متغیره همراه با کروماتوگرافی گازی دو بعدی جامع به همراه ترجمه فارسی

 

عنوان فارسی مقاله تجزیه تحلیل کمی اسانس ها در عطر با استفاده از وضوح منحنی چند متغیره همراه با کروماتوگرافی گازی دو بعدی جامع
عنوان انگلیسی مقاله Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography
رشته های مرتبط شیمی، شیمی تجزیه و شیمی کاتالیست
فرمت مقالات رایگان

مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند

همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد

کیفیت ترجمه کیفیت ترجمه این مقاله متوسط میباشد 
توضیحات ترجمه این مقاله به صورت خلاصه انجام شده است.
نشریه الزویر – Elsevier
مجله مجله شیمی تحلیلی – Analytica Chimica Acta
سال انتشار 2011
کد محصول F915

مقاله انگلیسی رایگان (PDF)

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان (PDF)

دانلود رایگان ترجمه مقاله

خرید ترجمه با فرمت ورد

خرید ترجمه مقاله با فرمت ورد
جستجوی ترجمه مقالات جستجوی ترجمه مقالات شیمی

  

فهرست مقاله:

چکیده
1- مقدمه
2-2 مواد و روش ها
2-1 نمونه ها و مواد
2-2 GC×GC-FID
2-3 تجزیه تحلیل کمی
3-نتایج و بحث
4- نتیجه گیری

 

بخشی از ترجمه فارسی مقاله:

 1- مقدمه
سنجش کمی معمولا یک رشته مطالعاتی قوی در شیمی تحلیلی بوده است. رویکرد مرسوم، مدل واسنجی یا کالیبراسیون تک متغیره برای یک آنالیت می باشد. ضرورتا، این خود متشکل از همبستگی پاسخ های ابزاری با غلظت های آنالیت هدف می باشد. در کراماتوگرافی گازی(GC) پاسخ ابزاری یک منطقه پیک می باشد که می توان آن را از طریق انتگراسیون یا انتگرال گیری سنتی براورد کرد(1). با این حال بدست اوردن نتایج کمی زمانی می تواند مشکل افرین باشد که بخواهیم وجود اسانس ها را در عطر ارزیابی کنیم(2).
نخستین گام در رویکرد های مرسوم برای انجام این کار شناسایی نشان گر های شیمیایی خاص در اسانس هدف می باشد. شاخص های نگه داشت برنامه نویسی شده دمایی پیک های ناشناخته با ستون های قطبی و غیر قطبی تعیین شده و همراه با طیف های وزنی یونیزاسیون تاثیر الکترون برای شناسایی صحیح هر پیک(2) لازم است.
برای اسانس های ناشی از چندین کشور، اجزای مشخص اسانس و پیش ساز های بیو سنتتیک عادی که بایستی برای تعریف کیفیت اسانس مطلوب باشد را می توان به عنوان نشانگر ها انتخاب کرد(3). وقتی که برخی از نشان گر ها و یا نسبت های مورد نیاز برای تعیین اسانس شناسایی شد، آن ها را می توان در ترکیب کمپلکس یعنی عطر های تجاری به طور کمی سنجش کرد نتایج برای براورد مقدار اسانس در ترکیب کمپلکس استفاده شد. مقادیر مرجع برای هر نشانگر یا نسبت های آن ها شامل میانگین، حداقل و حداکثر با در نظر گرفتن تغییرات فصلی و اقلیمی در ترکیب اسانس(3) می باشد.
این روش کلاسیک می تواند گمراه کننده باشد به خصوص اگر مقدار این نشانگر شیمیایی پایین تر از استانه سنجش کمی باشد. برای مثال وقتی که شست و شوی همراه وجود داشته باشد، سنجش کمی نشانگر های شیمیایی متوقف می شود زیرا انتگراسیون پیک می تواند غلط انداز باشد. از این روی، روش هایی که باعث بهبود ظرفیت جدایش و تفکیک می شوندف از اهمیت ویژه ای برای این مسائل برخوردار هستند.
کروماتوگرافی گازی دو بعدی جامع(GC×GC) به یک روش معیار برای آشکار سازی نمونه های پیچیده تبدیل شده اند. سیستم (GC×GC) متشکل از کروماتوگراف گاز سنتی با و ستون مویینه که به صورت سری به هم متصل شده اند می باشد به طوری که همه بخش های نمونه حاصل از اولین ستون وارد دومین ستون می شوند و به طور متوالی یا سری تچزیه تحلیل می شوند.
رابط کلیدی که امکان تزریق بخش های کوچگ و باریک را از اولین به دومین ستون می دهد، مدولاتور می باشد. تحلیل (GC×GC) حساسیت بالاتر، قابلیت شناسایی بالاتر و قدرت تفکیک بیشتر(5) را دارد. چون (GC×GC) یک سیستم تفکیک ارتوگنال یا متعامد واقعی را فراهم می کند( وقتی که مکانیسم نکه داشت از اولین و دومین بعد مستقل باشد)، امکان مشاهده توزیعات منظم ترکیبات شیمیایی مشابه در صفحه نگه داشت وجود دارد. به این ترتیب، ترکیبات متعدد کوچک موجود در برخی از اسانس ها را می توان تفکیک کرد، زیرا هر پیک به دو مکانیسم تفکیک تزریق و سپس آن را شناسایی کرد و این ناشی از حساسیت بالاتر آن ها است(7-9).
حتی بدون شناسایی مثبت ترکیبات، همانند تحلیل (GC×GC)، این روش می تواند برای تحلیل اسانس ها برای مثال برای آشکار سازی تغییرات فصلی و منطقه ای و تشخیص مواد تقلبی که با آنالیز جی سی قابل شناسایی نمی باشد استفاده شود. اگرچه (GC×GC) می تواند حساسیت و ظرفیت پیک مورد نیاز را فراهم کند، استفاده از رویکرد مرسوم( استفاده از ترکیبات نشان گذاری شده) برای شناسایی یک نمونه پیچیده به عنوان اسانس در یک ترکیب پیچیده تر نظیر نمونه عطر می تواند یک کار بسیار سخت و خسته کننده باشد.
اندازه گیری کمی یک تک نشانگر شیمیایی معمولا معمولا با انتگراسیون سنتی انجام می شو با این حال در این روش سیگنال کراماتوگرافی نشان گر به خوبی مشخص است. دی گودی و همکاران(11) یک روش جایگزین را برای سنجش کمی ترکیبات هدف با استفاده از کالیبراسیون حداقل مربعات جزیی چند سویه پیشنهاد کرده اند و به موجب آن شست و شوی همراه بر نتایج تاثیری ندارد. به علاوه، زنگ و همکاران(12) یک تحلیل عاملی پنجره متحرک جایگزین و روش محدود کننده تکراری را برای استخراج پروفیل خالص به منظور سنجش کمی آنالیت های هدف پیشنهاد کرده اند در مواردی که روش شست و شوی همراه موجود بود.
در مقایسه با کراماتوگرافی گازی سنتی با تشخیص طیف سنجی وزنی( جی سی مس)، مقدار اطلاعات بدست آمده از کروماتوگرام GC×GC FID به طور قابل ملاحظه ای بزرگ تر است. از این روی به جای استفاده از نشانگر شیمیایی برای تعیین کمی تریب کملپکس در یک نمونه کمپلکس، کروماتوگرام دو بعدی را می توان در سه آنالیز استفاده کرد.
از آن جا که اطلاعات ذاتی بدست آمده از کروماتوگرام GC×GC به طور قابل ملاحظه ای بزرگ تر و پیچیده تر است، تفسیر دستی آن ها می تواند مشکل آفرین و حتی غیر ممکن باشد. در نتیجه، استفاده از یک روش کمومتری توصیه می شود زیرا نتایج مطمئن و غیر ذهنی در اختیار می گذارد(13).
پدرسو و همکاران از راهبرد های کالیبراسیون چند متغیره برای شناسایی مواد افزودنی نفتی با استفاده از داده ای GC×GC-FID(14) استفاده کردند. یگ روش چند متغیره مهم که به فراوانی با داده های GC×GC-FID استفاده نشده است، الگوریتم پیشنهادی توسط تولر و همکاران در 1995، موسوم به وضوح منحنی چند متغیره می باشد(15).
این روش در تجزیه تحلیل ترکیبات پیچیده و مرکب از طریق روش های تحلیلی مختلف(16-20) نظیر کروماتوگرافی با عملکرد بالا متصل به یک دتکتور آرایه دیود مورد استفاده قرار گرفته است(21). تئوری الگوریتم MCR در مقالات قبلی به خوبی مورد بحث و بررسی قرار گرفته است(22-25).مهم ترین ویژگی MCR مزیت مرتبه دومی است که در آن مرحله واسنجی را می توان با نمونه های کوچک به جای مجموعه واسنجی بزرگ ایجاد کرد و به این ترتیب امکان واسنجی ترکیبات اختیار شده حتی در حضور تداخل های غیر موجود در نمونه واسنجی وجود دارد. در الگوریتم MCR، مجموعه داده ها به دو ماتریس تجزیه می شود که یکی مربوط به پروفیل های غلظت و سایر پروفیل های ابزاری است.
این دو ترکیب به طور تکراری با مجموعه داده ها از طریق روش حداقل مربعات جایگزین تعدیل می شود که با یک براورد اولیه از پروفیل های ابزاری آنالیت خالص شروع می شود. در طی بهینه سازی ALS، چندین عامل محدود کننده نظیر انتخاب پذیری و بسته شدن را می توان برای محلول های شیمیایی به کار برد. شکل 1 نشان می دهد که چگونه الگوریتم MCR را می توان با داده های GC × GC-FID در یک ترکیب دو جزیی استفاده کرد.
نخستین گام، آشکار سازی کروماتوگرام های GC × GC-FID از ماتریس به یک بردار است. سپس، بردار های همه نمونه ها در خطوط ماتریس دی داده های دو بعدی قرار می گیرند که به ماتریس پروفیل های غلظت C و ماتریس با کروماتوگرام های هر جز خالص s تجزیه می شوند.
در نهایت، بعد از بهینه سازی ALS، بردار های بدست آمده در ماتریس S به کروماتوگرام های GC × GC-FID دو بعدی تغییر داده می شود و منحنی واسنجی را می توان با استفاده از داده های موجود در ماتریس C ایجاد کرد. به این ترتیب، ترکیب GC × GC-FID و MCR-ALS برای تحلیل گر، پروفیل های ابزاری از هر ترکیب خالص علاوه بر اطلاعات کمی ارایه می کند. در نتیجه این بهترین ترکیب برای حل مسائل پیچیده مربوط به یکی از اهداف نهایی در شیمی تحلیلی است.
در این مقاله، ما استفاده از روش MCR-ALS را برای تجزیه تحلیل داده های GC×GC-FID پیشنهاد می کنیم. به منظور ارزیابی امکان سنجی یا امکان پذیری این روش، سنجش کمی اسانس روزماری در نمونه های حاوی تداخل( اسانس آناناس یا عطر تجاری) که در مجموعه واسنجی وجود نداشت انجام شد که مزیت درجه دومی الگوریتم را ارزیابی می کند.
به علاوه، مقدار اسانس علف لیمو در عطر های تجاری برای ارزیابی صحت روش پیشنهادی به طور کمی اندازه گیری شد.

بخشی از مقاله انگلیسی:

1. Introduction

Quantification has always been a field of intensive study in analytical chemistry. The conventional approach is the univariate calibration model for a single analyte. Essentially, it consists on the correlation of the instrumental responses with the concentrations of the target analyte. In gas chromatography (GC) the instrumental response is the peak area, which can be estimated through conventional integration [1]. However, obtaining quantitative results can be problematic when the target is not a single analyte, but a complex mixture, such as the case when evaluating the presence of essential oils in perfumes [2]. The first step in conventional approaches to perform this task is to identify specific chemical markers present only in the targeted essential oil or essence. Temperature-programmed retention indices ofthe unknown peaks determined with polar and non-polar columns, combined with electron-impact ionization mass spectra, are required to correctly identify each peak [2]. For essential oils originating from several countries, characteristic components of the essential oil and their common biosynthetic precursors that must be met to define essential oil quality can be chosen as markers [3]. Once identified, some markers, or their ratios required to characterize an essential oil, are quantified in the complex mixture, i.e., commercial perfumes and the result is then used to estimate the amount of the essential oil in the complex mixture. The reference values for each marker or their ratios include the average, minimum and maximum, taking into account seasonal or climatic variations in essential oil composition [3]. This classical procedure can be misleading if co-elution is present or if the amount of the chemical marker is under the limit of quantification. For example, when co-elution is present, quantification of the chemical markers will be hampered as the resulting peak integration may be erroneous. Therefore, techniques which improve separation capacity can be of special relevance to these problems. Introduced in 1991 by Phillips and coworker [4], comprehensive two-dimensional gas chromatography (GC × GC) has become the benchmark technique for unraveling complex samples. The GC × GC system consists of conventional gas chromatograph fitted with two capillary columns connected in series, such that all sample portions emerging from the first column enter the second and are analyzed sequentially. The key interface that allows the injection of small and narrow fractions from the first to the second column is the modulator. A GC × GC analysis provides higher sensitivity, detectability and separation power [5]. Because GC × GC provides a true orthogonal separation system (when the retention mechanisms from the first and second dimension are independent), it is possible to observe well ordered distributions of chemically similar compounds in the retention plane [6]. In this way, numerous small ingredients presentin some essential oils can be separated, because every peak is submitted to two different mechanisms of separation and then detected, due to the higher sensitivity [7–9]. Even without positive identification of the compounds, as in a GC × GC-FID analysis, this technique can be very useful for the analysis of essential oils, for example to reveal some regional or seasonal variations and to detect adulterations that would be unnoticed by GC analysis [2]. Even though GC × GC may provide the peak capacity and the sensitivity needed, the use of the conventional approach (use of marked compounds) to quantify a complex sample as an essential oil in a more complex mixture such as perfume sample is still a tedious and time-consuming task. The quantification of the individual chemical marker is, usually, obtained by conventional integration [10], but in this approach the chromatographic signal of the marker has to be well resolved. de Godoy et al. [11] proposed an alternative for quantification of targeted-compounds by using an interval multi-way partial least squares calibration whereby coelution did not affect the results. Furthermore, Zeng et al. [12] proposed an alternative moving window factor analysis and twostep iterative constraint method to extract the pure profile (either mass or absorbance spectra) in order to quantify targeted-analytes, in cases where co-elution is present. When compared to conventional gas chromatography with mass spectrometric detection (GC–MS) the amount of information obtained from a GC × GCFID chromatogram is considerably larger. Thus, instead of using a chemical marker to quantify a complex mixture in a complex sample, the whole two-dimensional chromatogram can be used in these analyses. As the intrinsic information obtained from GC × GC chromatograms is considerably larger and more complex, their manual(or conventional)interpretation can be problematic or even impossible. Consequently, the use of a chemometric approach is recommended, because it provides a reliable and non-subjective result[13]. Pedroso et al. applied multivariate calibration strategies to identify of gasoline adulteration, using GC × GC-FID data [14]. An important multivariate technique that has not been widely used with GC × GC-FID data is the algorithm proposed by Tauler et al. in 1995 called multivariate curve resolution (MCR) [15]. This method has been employed in analysis of complex mixtures through different analytical techniques [16–20], such as high performance liquid chromatography coupled to diode array detection [21]. The theory behind the MCR algorithm has been discussed in previously papers [22–25]. The most important feature of the MCR is the second order advantage, in which the calibration step can be built withfew samples insteadof a large calibrationset and,furthermore,itispossible toquantify the compounds ofinterest eveninthe presence of interferences not present in the calibration sample set. In the MCR algorithm the data setis decomposed into two matrixes, one related to concentration profiles and another related to instrumental profiles. These two matrixes are iteratively adjusted to the data set through an alternating least squares (ALS) procedure, which starts with an initial estimate of pure analyte instrumental profiles. During the ALS optimization, several constraints, such as non-negativity, unimodality, closure and selectivity, can be applied to obtain chemically meaningful solutions. Fig. 1 exemplifies how the MCR algorithm can be used with GC × GC-FID data in the case of a two component mixture. The first step is the unfolding of the GC × GC-FID chromatograms from a matrix to a vector. Next, the vectors of all samples are placed in the lines of the bidimensional data matrix D, which is decomposed into the matrix of concentration profiles C and the matrix with the chromatograms of each pure component S. Finally, after ALS optimization, the vectors obtained in matrix S are reshaped into two-dimensional GC × GC-FID chromatograms and the calibration curve can be built using the data contained in with matrix C. Thus, the combination of GC × GCFID and MCR-ALS provides the analyst the instrumental profiles of each pure compound besides the quantitative information. Consequently,this may be the best combination to unravelthese complex issues regarding one of the ultimate goals in analytical chemistry. In this paper, we proposed the use of the MCR-ALS method to analyze data obtained by GC × GC-FID. To evaluate the feasibility of this method, quantification ofthe essential oil of rosemary was performed in samples containing interferences (pineapple essence or a commercial perfume) not presentin the calibration set, which evaluates the secondorder advantage ofthe algorithm.Additionally,the amount of essential oil oflemon grass was quantified in commercial perfumes to evaluate the accuracy of the proposed method.

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا