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The  use  of  multivariate  curve  resolution  (MCR)  to build  multivariate  quantitative  models  using  data
obtained  from  comprehensive  two-dimensional  gas  chromatography  with  flame  ionization  detection
(GC ×  GC-FID)  is  presented  and  evaluated.  The  MCR  algorithm  presents  some  important  features,  such  as
second  order  advantage  and  the  recovery  of the  instrumental  response  for each  pure  component  after
optimization  by  an alternating  least  squares  (ALS)  procedure.  A  model  to  quantify  the  essential  oil  of
rosemary  was  built  using  a calibration  set  containing  only  known  concentrations  of  the  essential  oil  and
cereal  alcohol  as  solvent.  A calibration  curve  correlating  the  concentration  of  the  essential  oil  of  rosemary
and the  instrumental  response  obtained  from  the  MCR-ALS  algorithm  was  obtained,  and  this  calibration
model  was  applied  to  predict  the  concentration  of  the oil  in complex  samples  (mixtures  of  the  essential
oil,  pineapple  essence  and  commercial  perfume).  The  values  of  the  root  mean  square  error  of  prediction
(RMSEP)  and  of  the  root  mean  square  error  of  the  percentage  deviation  (RMSPD)  obtained  were  0.4%
(v/v)  and  7.2%,  respectively.  Additionally,  a  second  model  was  built  and  used  to  evaluate  the  accuracy

of  the  method.  A  model  to quantify  the  essential  oil of lemon  grass  was  built  and  its  concentration  was
predicted  in  the validation  set  and  real  perfume  samples.  The  RMSEP  and  RMSPD  obtained  were 0.5%  (v/v)
and 6.9%,  respectively,  and  the  concentration  of the  essential  oil  of  lemon  grass  in perfume  agreed  to  the
value  informed  by  the  manufacturer.  The  result  indicates  that  the  MCR  algorithm  is  adequate  to resolve
the target  chromatogram  from  the  complex  sample  and  to build  multivariate  models  of  GC  × GC-FID  data.
. Introduction

Quantification has always been a field of intensive study in
nalytical chemistry. The conventional approach is the univariate
alibration model for a single analyte. Essentially, it consists on the
orrelation of the instrumental responses with the concentrations
f the target analyte. In gas chromatography (GC) the instrumental
esponse is the peak area, which can be estimated through con-
entional integration [1].  However, obtaining quantitative results
an be problematic when the target is not a single analyte, but a
omplex mixture, such as the case when evaluating the presence
f essential oils in perfumes [2].
The first step in conventional approaches to perform this task
s to identify specific chemical markers present only in the tar-
eted essential oil or essence. Temperature-programmed retention
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indices of the unknown peaks determined with polar and non-polar
columns, combined with electron-impact ionization mass spectra,
are required to correctly identify each peak [2]. For essential oils
originating from several countries, characteristic components of
the essential oil and their common biosynthetic precursors that
must be met  to define essential oil quality can be chosen as mark-
ers [3].  Once identified, some markers, or their ratios required to
characterize an essential oil, are quantified in the complex mixture,
i.e., commercial perfumes and the result is then used to estimate
the amount of the essential oil in the complex mixture. The ref-
erence values for each marker or their ratios include the average,
minimum and maximum, taking into account seasonal or climatic
variations in essential oil composition [3]. This classical procedure
can be misleading if co-elution is present or if the amount of the
chemical marker is under the limit of quantification. For example,

when co-elution is present, quantification of the chemical markers
will be hampered as the resulting peak integration may be erro-
neous. Therefore, techniques which improve separation capacity
can be of special relevance to these problems.

dx.doi.org/10.1016/j.aca.2011.05.003
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:augusto@iqm.unicamp.br
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Fig. 1. Scheme for MCR-ALS ana

Introduced in 1991 by Phillips and coworker [4],  comprehen-
ive two-dimensional gas chromatography (GC × GC) has become
he benchmark technique for unraveling complex samples. The
C × GC system consists of conventional gas chromatograph fitted
ith two capillary columns connected in series, such that all sample
ortions emerging from the first column enter the second and are
nalyzed sequentially. The key interface that allows the injection
f small and narrow fractions from the first to the second column
s the modulator. A GC × GC analysis provides higher sensitivity,
etectability and separation power [5].  Because GC × GC provides

 true orthogonal separation system (when the retention mecha-
isms from the first and second dimension are independent), it is
ossible to observe well ordered distributions of chemically similar
ompounds in the retention plane [6].  In this way, numerous small
ngredients present in some essential oils can be separated, because
very peak is submitted to two different mechanisms of separation
nd then detected, due to the higher sensitivity [7–9]. Even without
ositive identification of the compounds, as in a GC × GC-FID anal-
sis, this technique can be very useful for the analysis of essential
ils, for example to reveal some regional or seasonal variations and
o detect adulterations that would be unnoticed by GC analysis [2].

Even though GC × GC may  provide the peak capacity and the
ensitivity needed, the use of the conventional approach (use of
arked compounds) to quantify a complex sample as an essen-

ial oil in a more complex mixture such as perfume sample is
till a tedious and time-consuming task. The quantification of the
ndividual chemical marker is, usually, obtained by conventional
ntegration [10], but in this approach the chromatographic signal
f the marker has to be well resolved. de Godoy et al. [11] proposed
n alternative for quantification of targeted-compounds by using
n interval multi-way partial least squares calibration whereby
oelution did not affect the results. Furthermore, Zeng et al. [12]
roposed an alternative moving window factor analysis and two-
tep iterative constraint method to extract the pure profile (either

ass or absorbance spectra) in order to quantify targeted-analytes,

n cases where co-elution is present. When compared to con-
entional gas chromatography with mass spectrometric detection
GC–MS) the amount of information obtained from a GC × GC-
f GC × GC-FID chromatograms.

FID chromatogram is considerably larger. Thus, instead of using
a chemical marker to quantify a complex mixture in a complex
sample, the whole two-dimensional chromatogram can be used in
these analyses. As the intrinsic information obtained from GC × GC
chromatograms is considerably larger and more complex, their
manual (or conventional) interpretation can be problematic or even
impossible. Consequently, the use of a chemometric approach is
recommended, because it provides a reliable and non-subjective
result [13]. Pedroso et al. applied multivariate calibration strategies
to identify of gasoline adulteration, using GC × GC-FID data [14].

An important multivariate technique that has not been widely
used with GC × GC-FID data is the algorithm proposed by Tauler
et al. in 1995 called multivariate curve resolution (MCR) [15].
This method has been employed in analysis of complex mixtures
through different analytical techniques [16–20],  such as high per-
formance liquid chromatography coupled to diode array detection
[21]. The theory behind the MCR  algorithm has been discussed in
previously papers [22–25].  The most important feature of the MCR
is the second order advantage, in which the calibration step can be
built with few samples instead of a large calibration set and, further-
more, it is possible to quantify the compounds of interest even in the
presence of interferences not present in the calibration sample set.
In the MCR  algorithm the data set is decomposed into two matrixes,
one related to concentration profiles and another related to instru-
mental profiles. These two matrixes are iteratively adjusted to
the data set through an alternating least squares (ALS) procedure,
which starts with an initial estimate of pure analyte instrumental
profiles. During the ALS optimization, several constraints, such as
non-negativity, unimodality, closure and selectivity, can be applied
to obtain chemically meaningful solutions. Fig. 1 exemplifies how
the MCR  algorithm can be used with GC × GC-FID data in the case
of a two  component mixture. The first step is the unfolding of the
GC × GC-FID chromatograms from a matrix to a vector. Next, the
vectors of all samples are placed in the lines of the bidimensional

data matrix D, which is decomposed into the matrix of concentra-
tion profiles C and the matrix with the chromatograms of each pure
component S. Finally, after ALS optimization, the vectors obtained
in matrix S are reshaped into two-dimensional GC × GC-FID chro-
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Table 1
Composition of the validation samples, in % (v/v), used to evaluate the chemometric
model.

Sample Essential oil of rosemary Pineapple essence Perfume #1

V1 8.0 – –
V2 12.0 – –
V3  5.0 2.0 –
V4 4.0  4.0 –
V5  5.0 10.0 –
V6  5.0 6.0 –
V7  8.0 4.0 –
V8 4.0  – 6.0
V9 6.0 – 80.0
V10 5.0  – 95.0
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Table 2
Composition of the validation samples (%, v/v) used to evaluate the accuracy of the
model.

Sample Essential oil of
lemon grass

Pineapple
essence

Perfume# 2
essence

V11 8.0 – –
V12  10.0 – 20.0
V13  5.0 – 20.0
V14  5.0 20.0 –
S1a 8.0–9.0 – –
S2a 8.0–9.0 – –

samples during their preparation, but they were already present
in the fragrances (rosemary oil, pineapple essence) and in the per-
fume used. During data processing, it was  observed that the region
atograms and the calibration curve can be built using the data
ontained in with matrix C. Thus, the combination of GC × GC-
ID and MCR-ALS provides the analyst the instrumental profiles of
ach pure compound besides the quantitative information. Conse-
uently, this may  be the best combination to unravel these complex

ssues regarding one of the ultimate goals in analytical chemistry.
In this paper, we proposed the use of the MCR-ALS method to

nalyze data obtained by GC × GC-FID. To evaluate the feasibility of
his method, quantification of the essential oil of rosemary was per-
ormed in samples containing interferences (pineapple essence or a
ommercial perfume) not present in the calibration set, which eval-
ates the second order advantage of the algorithm. Additionally, the
mount of essential oil of lemon grass was quantified in commercial
erfumes to evaluate the accuracy of the proposed method.

. Materials and methods

.1. Samples and materials

The essential oil of rosemary, synthetic pineapple essence,
ereal alcohol and a commercial perfume (perfume #1) were
btained from stores in Campinas, Brazil, to evaluate the chemo-
etric model. The calibration samples were prepared by the

ilution of the essential oil of rosemary in cereal alcohol at the
oncentrations of 2.5, 5.0, 7.5, 10.0 and 15.0% (v/v). For the vali-
ation samples, pineapple essence or a commercial perfume were
dded as interferences. The first interference was chosen to simu-
ate a complex “perfume”-like sample. This particular mixture is not
sed in any commercial perfume known to the authors. The second

nterference was chosen to provide a higher complexity sample, in
rder to evaluate the chemometric model. The compositions of the
alidation samples are listed in Table 1.

To evaluate the accuracy of the proposed MCR-ALS method, a
econd data set was built to quantify the essential oil of lemon
rass in a local commercial perfume (perfume #2), which contains
his essential oil. The essential oil of lemon grass, an essence con-
aining the major constituents of this perfume (without the lemon
rass essential oil) and two samples of the perfume from differ-
nt batches were supplied by the perfume manufacturer. Firstly, a
alibration model was built by diluting the essential oil at the con-
entrations of 2.5, 5.0, 7.5, 10.0 and 15.0% (v/v) in cereal alcohol.
he validation samples were prepared by introducing pineapple
ssence and the essence of the commercial perfume as interfer-
nces, to simulate a low complexity and high complexity sample,
espectively. The compositions of the validation samples are listed
n Table 2. Afterwards, the model was used to quantify the amount

f essential oil of lemon grass in the perfume #2 samples.
a Perfume #2 samples from different batches. Essential oil concentration range
informed by manufacturer.

2.2. GC × GC-FID

The GC × GC-FID prototype is based on a HP-6890 Series GC-FID
coupled to a model 7263 liquid auto-sampler (Hewlett-Packard,
Wilmington, DE) and fitted with a split–splitless injector (operated
in split mode, split ratio 200:1). Hydrogen (0.6 mL min−1) was used
as carrier gas. This prototype uses a lab-made four jet cryogenic
modulator. The cryogenic fluid was  N2 cooled in liquid nitrogen
(LN2). N2 flow was  toggled by two three-way Asco solenoid valves
(Florham Park, NJ). The command to these valves was controlled
by a DAQPad-6015 16 bits AD/DA board controlled by lab-made
software developed using the LabView v8.2 programming environ-
ment (National Instruments, Austin, TX) and connected to an AMD
Athlon 4600 Dual Core personal computer. The column set con-
sisted of a 30 m × 0.25 mm × 0.25 �m HP-5 poly(5% diphenyl/95%
dimethylsiloxane) column (Agilent Technologies, Wilmington, DE)
connected by a press fit connector to a 1 m × 0.1 mm × 0.1 �m
Supelcowax 10 polyethylene glycol column (Supelco, Bellefonte,
PA, USA). For all runs, the modulation period was set to 6.0 s and
data acquisition frequency was 100 Hz. The oven temperature pro-
gram was: 60 ◦C to 250 ◦C at 3 ◦C min−1. The injection and detection
temperatures were 250 ◦C. The chromatograms were acquired and
digitalized through Chemstation software (Agilent Technologies,
Wilmington, DE). To estimate the deviation of the retention times
in both dimensions, five replicates of the essential oil of rosemary,
at 30% (v/v) in cereal alcohol, were injected.

2.3. Multivariate analysis

The GC × GC chromatograms were exported from Chem-
station software to MatLab 6.5 (Mathworks, Natick, MA,
USA) as ASCII files. The chromatograms were unfolded and
aligned using a peakmatch algorithm downloaded from
http://synoveclab.chem.washington.edu/ [26]. The MCR-ALS
routine is also available on the internet (http://www.mcrals.info/).

3. Results and discussion

The GC × GC chromatogram obtained for the sample containing
15% (v/v) of the essential oil of rosemary in cereal alcohol is shown
in Fig. 2, where a broad peak starting at 1tR ≈ 10.5 min  appears as a
streak through all 2D space. This peak was identified as a co-elution
of glycols, which are used for solubilization purposes and also act
as fixing agents. Therefore, their presence is expected in most per-
fume and cologne products. Because of the highly polar nature of
these species, they present very strong interactions with the sec-
ond dimension column and, therefore, they elute in 2D as extremely
large and tailed peaks. These constituents were not added to the
that contains these signals (10.2 min  < 1tR < 14.4 min) as well as

http://synoveclab.chem.washington.edu/
http://www.mcrals.info/
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ig. 2. GC × GC chromatogram obtained for the sample containing 15% (v/v) of
ssential oil of rosemary in cereal alcohol. The areas excluded before building the
ultivariate model are highlighted.

he beginning of the chromatogram (1tR < 3.5 min), where solvent
lutes, do not present any quantitative information; therefore, they
ere suppressed from the data set used to build the chemometric
odel.
Fig. 3 presents the chromatograms obtained for essential oil

f rosemary, pineapple essence and the perfume #1 without the
xcluded regions, where it can been noted that the samples have
ome identical compounds and some compounds with 1tR and 2tR
lose to the same positions. Consequently, it was expected that

 sample containing the essential oil of rosemary and pineap-
le essence or perfume would have a GC × GC chromatogram
ith co-elution in some regions. Fig. 4 shows the chromatograms

btained for validation samples V5 and V9 confirming that these co-
lutions do indeed exist. The MCR  algorithm was selected to build

he chemometric model to quantify the essential oil of rosemary
n samples with interferences absent in the calibration samples,
ecause this routine presents several important proprieties as the
econd order advantage.

ig. 3. Typical GC × GC chromatograms with the excluded areas suppressed of (A)
he essential oil of rosemary, (B) pineapple essence and (C) commercial perfume.
Fig. 4. GC × GC chromatograms obtained for (A) validation sample V5 and (B) vali-
dation sample V9.

Deviation in the retention times in both dimensions is a very
common subject in day-to-day chromatography runs, thus it would
lead to wrong results when chemometric is applied to raw chro-
matographic data. Therefore, the deviation was estimate through
the variation of the retention times in both dimension by injection
of diluted essential oil of rosemary and eight peaks with different
polarities and boiling points were monitored. No deviations of the
retention time in the first dimension were observed; however, the
values for the estimated standard deviation of the retention time in
the second dimension ranged from 20 to 77 ms  for the monitored
peaks. Although these values would seem to be insignificant for
conventional gas chromatographic analysis, it is worth to highlight
that the peak width for GC × GC is typically 80–400 ms and, there-
fore, it would jeopardize the results. To fix this problem, all GC × GC
chromatograms were unfolded and aligned using the peakmatch
routine before building the model [26].

As mentioned earlier, to employ the MCR-ALS algorithm an ini-
tial estimate of the experimental data is necessary. In the first
part of this work, the chromatograms obtained for pure samples
of the essential oil of rosemary, pineapple essence and perfume
#1 were used for the initial estimates. During the ALS optimiza-
tion of the model, selectivity constraints for concentrations and
non-negativity constraints for concentrations and chromatograms
were applied. As all samples were used to build the model and not
only the calibration ones, the selectivity constraint was  employed
to provide to the model the presence or absence of the interferences
in the samples, avoiding problems of rotational ambiguity in the
resolution results. The chromatograms resolved by the model for
the essential oil of rosemary, pineapple essence and perfume #1 are
shown in Fig. 5. Comparing Figs. 3 and 5, the high similarity between
the chromatograms for pure samples and for the chromatograms
resolved by the MCR  model can be seen. Then a calibration curve
was  carried out using the concentration results obtained from the
model and the reference concentration of the calibration samples
(Table 1), where a correlation coefficient of 0.996 was obtained.

The prediction of the concentration of the essential oil of rose-
mary in the validation samples was performed by interpolating
into the calibration curve the concentration results provided by
the MCR  model for these samples. Table 3, which displays the

predicted concentration for the essential oil of rosemary and the
absolute error for each validation sample, allows the assessment of
the accuracy and suitability of the proposed method. A graphic of
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Fig. 5. GC × GC chromatograms recovered by MCR-ALS for (A) the essential oil of
rosemary, (B) pineapple essence and (C) commercial perfume.

Table 3
Predicted and real concentrations of the essential oil of rosemary for the validation
sample set in % (v/v), and the absolute errors (%, v/v).

Sample Real Predicted Absolute errors

V1 8.0 7.3 −0.7
V2 12.0  11.4 −0.6
V3  5.0 5.5 0.5
V4 4.0  3.7 −0.3
V5  5.0 4.4 −0.6
V6  5.0 5.0 0.0
V7  8.0 7.9 0.1
V8  4.0 4.3 0.3

p
t
r
(

F
p
c

V9 6.0  6.2 0.2
V10 5.0 4.6 −0.4
redicted concentration versus reference concentration was plot-
ed and a correlation coefficient of 0.988 was obtained (Fig. 6). The
oot mean square error of the percentage deviation (RMSPD) (Eq.
1)) and the root mean square error of prediction (RMSEP) values

ig. 6. Concentration of the essential oil of rosemary (%, v/v) in validation sam-
les versus concentrations of these samples predicted by MCR-ALS (r = correlation
oefficient).
Fig. 7. GC × GC chromatograms for (A) the essential oil of lemon grass, (B) real com-
mercial sample of perfume and (C) the recovered chromatogram for the essential
oil of lemon grass in the real commercial perfume.

obtained were 7.2% and 0.4% (v/v), respectively

RMSPD = 100 ×

√√√√
n∑

i=1

(ypred(i) − yref (i))
2

(yref (i))
2

× 1
n

(1)

where ypred(i) and yref(i) are the reference and the predicted concen-
trations of the essential oil of rosemary in the ith sample and n is
the number of prediction samples.

The MCR-ALS method was also evaluated by predicting the con-
centration of the lemon grass essential oil in validation samples and
in two real perfume #2 samples. The procedure for calibration was
performed similarly as described for the rosemary essential oil. The
chromatograms of the pure samples of essential oil of lemon grass,
pineapple essence and perfume #2 essences were obtained for the
initial estimates needed to the MCR-ALS algorithm. The concentra-
tion of each component in the validation set and perfume sample
is presented in Table 2. A calibration curve was build using the
concentration results for the lemon grass essential oil, using the
chromatogram resolved by the model for the essential oil, versus
the reference concentration of the calibration samples; finally, a
correlation coefficient of 0.983 was achieved. Fig. 7(A) illustrates
the pure essential oil of lemon grass, (B) the commercial sample
and (C) the recovered profile for the essential oil of lemon grass in
the real perfume sample. To predict the essential oil concentration
in validation and perfume samples, the results provided by MCR-
ALS were interpolated in the calibration curve and the results are

presented in Table 4. The root mean square error of the percent-
age deviation (RMSPD) (Eq. (1)) and the root mean square error
of prediction (RMSEP) values obtained were 6.9% and 0.5% (v/v),

Table 4
Predicted and real concentrations of the essential oil of lemon grass for the validation
sample set (%, v/v), and the absolute errors (%, v/v).

Sample Real Predicted Absolute errors

V11 8.0 8.5 0.5
V12 10.0 9.3 −0.7
V13 5.0 5.4 0.4
V14 5.0 5.3 0.3
S1  8.0–9.0 8.7 –*
S2 8.0–9.0 8.2 –*
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espectively. Values obtained for perfume samples were not used
o calculate RMSPD and RMSEP because the supplier provided only

 concentration range for the essential oil of lemon grass.
The results achieved by the MCR-ALS algorithm demonstrate

hat the proposed approach can be used to recovery a signal pro-
le even from complex mixtures. The chromatograms of essential
ils of rosemary and lemon grass were resolved from complexes
ixtures with pineapple and/or perfume essence and they were

sed to quantify these oils, which are complex mixtures of several
ompounds, as they were single species. The proposed approach is
n alternative to the single marker quantification in complex mix-
ures: the whole recovered chromatogram is used to predict the
oncentration of the mixture instead of few peaks or their ratios.

These results reveal that the MCR-ALS algorithm is able to work
ith data obtained by GC × GC-FID, thus combining the advantages

f the GC × GC-FID, such as high detectability, sensitivity and selec-
ivity, with the features of the MCR-ALS method, such as second
rder advantage and resolution of the chromatograms for each pure
ompound even in complex samples.

. Conclusions

The results indicate that the MCR-ALS algorithm can be
mployed to estimate multivariate calibration models with data
btained from a GC × GC-FID, which presents several advantages in
elation to conventional GC-FID, such as higher detectability, sen-
itivity and resolution power. In this way, these advantages can
e combined with the features of MCR-ALS method, such as sec-
nd order advantage, to analyze complex components in complex
amples. This combination GC × GC-FID + MCR-ALS was success-
ully tested in the quantification of the essential oil of rosemary
ven in the presence of interferences not present in the calibration
amples. After the optimization of the model, the chromatographic
rofiles obtained for the pure components were very similar to
C × GC-FID analysis of pure samples. The quantification of the
ssential oil of rosemary in the validation sample set was  per-
ormed and the RMSEP and RMSPD obtained were 0.4% (v/v) and
.2%, respectively, which validated the model proposed. For lemon
rass essential oil, RMSEP and RMSPD obtained were 0.5% (v/v) and
.9%, respectively; analysis of perfume samples were carried out

nd the results obtained agreed to the expected values.

The results suggest that the combination GC × GC-FID + MCR-
LS employed herein can be a powerful tool to resolve
hromatographic signals in samples with unknown interferences

[

[

ica Acta 699 (2011) 120– 125 125

or  not present in the calibration samples, as well as for quantifica-
tion of complex constituents in formulations such as perfumes and
toilet products.
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