دانلود رایگان مقاله انگلیسی سیگنالینگ فرار در تعاملات گیاه – گیاه: درختان سخن گو در عصر ژنومیکس به همراه ترجمه فارسی
عنوان فارسی مقاله | سیگنالینگ فرار در تعاملات گیاه – گیاه: درختان سخن گو در عصر ژنومیکس |
عنوان انگلیسی مقاله | Volatile Signaling in Plant-Plant Interactions: ‘‘Talking Trees’’ in the Genomics Era |
رشته های مرتبط | زیست شناسی، علوم گیاهی، ژنتیک و علوم سلولی و مولکولی |
فرمت مقالات رایگان |
مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
نشریه | Sciencemag |
سال انتشار | 2006 |
کد محصول | F816 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات زیست شناسی |
فهرست مقاله: گیاهان درباره چه چیزی صحبت می کنند؟ |
بخشی از ترجمه فارسی مقاله: گیاهان ممکن است ترکیبات ارگانیک فرار (VOCs ) که توسط گیاهان همسایه که مورد حمله گیاهخوار قرار گرفته اند تولید می شود را شناسایی کنند(استراق سمع ) ، تا قادر به “دفاع” از خود قبل از حمله گیاهخوار به خودشان باشند. تجزیه و تحلیل ترنسکریپتوم و آبشار سیگنال در گیاهان در معرض VOC نشان می دهد که گیاهان برای دفاع مستقیم و غیرمستقیم و تقویت توانایی های رقابتی، استراق سمع می کنند. پیشرفت در تحقیق در مورد بیوسنتز VOC و ادراک، تولید گیاهانی را که به طور ژنتیکی برای VOCs خاص؛ “ناشنوا ” یا “خاموش(لال) ” هستند را تسهیل کرده است. چنین گیاهانی، همراه با پیشرفت در ابزار اندازه گیری تحلیلی VOC، به محققان اجازه می دهد تا تعیین کنند که آیا سلاست ،سلامت گیاهان در جوامع طبیعی را افزایش می دهد یا خیر.
گیاهان درباره چه چیزی صحبت می کنند؟ |
بخشی از مقاله انگلیسی: Plants may ‘‘eavesdrop’’ on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically ‘‘deaf’’ to particular VOCs or ‘‘mute’’ in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities. Plants excel at gas exchange: They can literally build forests from CO2 taken from the air at about 120 Pg C yearj1, half of which is respired back to the atmosphere. Up to 36% of the assimilated carbon is released as complex bouquets of VOCs (1). Although some of these VOCs may be mere waste, others mediate various pollination and defense mutualisms with animals. These VOCmediated interactions of plants with organisms of higher trophic levels suggest that they communicate similarly with each other (2). Two decades ago, researchers serendipitously discovered changes in herbivore resistance and secondary metabolites in plants (Breceivers[) growing adjacently to herbivore-attacked plants (Bemitters[). Because in some experiments results were best explained by the aerial transfer of information (3), the phenomenon was popularly dubbed Btalking trees.[ This phrase seems unfortunate, because selection most likely favors plants that Beavesdrop[ on VOCs released from neighbors and respond by tailoring their phenotypes to enhance their own fitness. What Are Plants Talking About? An obvious conversation topic concerns impending attack from mobile herbivores, and most VOC-elicited responses have been interpreted accordingly. Measures of herbivore performance have been broadened to include the elicitation of various direct plant defenses (e.g., phenolics, alkaloids, terpenes, and defense proteins). Indirect defenses have also attracted attention, including food rewards that increase predation pressure on herbivores (4) and VOCs that help predators or parasitoids locate feeding herbivores (5, 6). Moreover, the signal cascades that elicit direct and indirect defenses have been scrutinized (7, 8) as have transcriptional responses (9–12) (Fig. 1). VOC exposure alone, without actual herbivore attack, may directly increase the production of defenses. Alternatively, VOC exposure may allow nearby plants to ready their defenses for immediate use once the herbivores move from the neighboring plant to attack the ‘‘listening’’ receiver. Exposure to volatiles from damaged sagebrush primes the elicitation of defensive proteinase inhibitors (PIs) in wild tobacco, and exposed plants subsequently receive less damage (13–15) (Fig. 2). Corn seedlings previously exposed to either individual components or to the entire blend of VOCs released from herbivoreattacked seedlings responded to simulated herbivory with increased VOC production and higher jasmonate (JA) accumulations compared with the responses of unexposed plants (8). Whether these enhanced VOC emissions protect corn seedlings remains to be determined. The priming of defense cascades may benefit plants that would incur fitness costs by activating defense responses (16), particularly in the absence of herbivore attack (17). If VOC exposure directly elicited defense responses, receiver plants would incur similar fitness costs without being damaged. Hence, plants that avoided investing fitnesslimiting resources in the production of costly defenses before an herbivore arrives, but were able to prime defense metabolism to launch defense responses when attacked, could realize a fitness benefit over plants that ‘‘ignored’’ the information coded in the VOCs emanating from their damaged neighbors. The use of microarrays that monitor a large fraction of the plant’s transcriptome can free analysis from observer bias about plants’ conversation topics and identify selective pressures other than impending attack from mobile herbivores, which volatile signaling could be used to anticipate. Herbivores frequently transmit pathogens, and the elicited responses may concern attack by impending pathogens more than attack by herbivores (18). The relentless competition with other plants for resources that cannot be readily hoarded (such as light and nutrients) is likely the most important selective force for plants. Plants are able to anticipate impending competition through far red (FR) light signals and changes in the photon flux of blue light transmitted through their neighbors’ canopies. These light signals are perceived by photoreceptors (e.g., phytochrome B) and elicit a complex of traits known as the shade-avoidance syndrome (SAS) (19). Experiments with tobacco plants transformed with a mutant ethylene receptor (etr1-1), which inhibits ethylene perception, have demonstrated that ethyleneinsensitive tobacco could not respond rapidly to FR signals and consequently was outcompeted by wild-type plants (20). At concentrations apparently possible in dense plant canopies, ethylene by itself elicits the SAS (21). Similarly, exposure to unidentified VOCs from barley cultivars changes the allocation of biomass between roots and shoots without influencing biomass production of receiver barley genotypes (22), a re-allocation that may influence competitive ability. Thus, responses to the most important environmental factors in a plant’s life may be anticipated by signals from neighboring plants. Almost anything can be a signal as long as it can be perceived and provides reliable information. |