دانلود رایگان ترجمه مقاله آنالیز شبکه و دستگاه کالبدسنجی اپلیکیشن های اجتماعی پیام رسانی آندروید – الزویر 2015
دانلود رایگان مقاله انگلیسی تجزیه و تحلیل شبکه و دستگاه کالبدسنجی برنامه های کاربردی اجتماعی پیام رسانی اندروید به همراه ترجمه فارسی
عنوان فارسی مقاله | تجزیه و تحلیل شبکه و دستگاه کالبدسنجی برنامه های کاربردی اجتماعی پیام رسانی اندروید |
عنوان انگلیسی مقاله | Network and device forensic analysis of Android social-messaging applications |
رشته های مرتبط | مهندسی فناوری اطلاعات، مهندسی کامپیوتر، مهندسی نرم افزار، امنیت اطلاعات و سیستم های چند رسانه ای |
کلمات کلیدی | شبکه پزشکی قانونی، پزشکی قانونی، آندروید، پیام رسانی فوری، حفظ حریم خصوصی در برنامه های پیام رسان، تست امنیت نرم افزار، برنامه داده |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
توضیحات | ترجمه این مقاله به صورت خلاصه و ناقص انجام شده است. |
نشریه | الزویر – Elsevier |
مجله | تحقیق دیجیتال – Digital Investigation |
سال انتشار | 2015 |
کد محصول | F784 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات مهندسی فناوری اطلاعات |
فهرست مقاله: چکیده |
بخشی از ترجمه فارسی مقاله: چکیده |
بخشی از مقاله انگلیسی: Abstract In this research we forensically acquire and analyze the device-stored data and network traffic of 20 popular instant messaging applications for Android. We were able to reconstruct some or the entire message content from 16 of the 20 applications tested, which reflects poorly on the security and privacy measures employed by these applications but may be construed positively for evidence collection purposes by digital forensic practitioners. This work shows which features of these instant messaging applications leave evidentiary traces allowing for suspect data to be reconstructed or partially reconstructed, and whether network forensics or device forensics permits the reconstruction of that activity. We show that in most cases we were able to reconstruct or intercept data such as: passwords, screenshots taken by applications, pictures, videos, audio sent, messages sent, sketches, profile pictures and more. Methodology We selected 20 instant messaging/social messaging applications from the Google Play store based on two factors: keyword results and the number of downloads. The keywords used when searching the Google Play Store were: “chat”, “chatting”, “date”, “dating”, “message”, and “messaging” to select the 20 applications. Within these search results we wanted to pick a wide range of applications based on a spectrum of popularity. The applications selected range from 500,000 downloads to over 200 million downloads. We would also like to note that we focused on the sections of these applications with one on one communication. For example, we only studied the “Instagram Direct Feature” and not the Instagram feed feature. Another example is that we only studied the direct messages in Snapchat and not “Snapchat Stories”. We performed network forensics to examine the network traffic to and from the device while sending messages and using the various features of these applications. This testing was performed in a controlled lab environment to reduce network variability due to smartphone devices often operating in changing network boundaries. We also performed a forensic examination of the Android device itself to retrieve information from the device pertaining to our activities using each of the applications. Table 5 shows a list of the tested applications in the order they were tested, their version numbers, and the features they support. Video demonstrations of these tests can be viewed at www. youtube.com/unhcfreg. Network analysis experimental setup In our research we used an HTC One M8 (Model #: HTC6525LVW, running Android 4.4.2) as well as an iPad 2 (Model #: MC954LL/A, running iOS 7.1.2). We created two accounts for each application using the Android and iPad 2 a week prior to data collection. The Android device was the target of our examination, and the iPad was used simply as a communications partner to exchange messages with the target device. We used a Windows 7 computer with WiFi and an Ethernet connection to the Internet to set up a wireless access point. This PC was used to capture network traffic sent over WiFi to and from both mobile devices. This set up is shown in Fig. 1. |