دانلود رایگان مقاله انگلیسی اثر میزان کربن بر رفتار جامد سازی و ویژگی های مورفولوژی فازهای تشکیل دهنده در آلیاژ Cr-Fe-C به همراه ترجمه فارسی
عنوان فارسی مقاله: | اثر میزان کربن بر رفتار جامد سازی و ویژگی های مورفولوژی فازهای تشکیل دهنده در آلیاژ Cr-Fe-C |
عنوان انگلیسی مقاله: | Effect of carbon content on solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys |
رشته های مرتبط: | شیمی و مهندسی مواد، شیمی آلی، شیمی فیزیک، شیمی کاربردی، شناسایی و انتخاب مواد |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
نشریه | الزویر – Elsevier |
کد محصول | F489 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات |
بخشی از ترجمه فارسی مقاله: 1 – مقدمه
2 – روش های تجربی |
بخشی از مقاله انگلیسی: 1. Introduction Cr-Fe-C alloy is well known for its excellent resistance to abrasion, oxidation and corrosion and has been extensively used in aggressive conditions, such as mining and mineral process, cement production and pulp and paper manufacture industries. Many previous investigations have focused on the microstructural characteristics, mechanical properties and abrasive wear behaviors of Cr-Fe-C alloys [1–8]. Previous research has shown that Cr-Fe-C alloys consist of hypoeutectic, near-eutectic and hypereutectic structures with Cr-Fe solid solution phase, M23C6 and M7C3 carbides [2]. Moreover, the best performances for Cr-Fe-C alloys are achieved, when there are large quantities of primary M7C3 carbides uniformly distributed in the [α+M7C3] eutectic colonies [2,8]. The morphologies of constituent phases can exhibit a wide variety of geometrical arrangements. Many recent investigations report solidification behaviors and morphological transitions of the constituent phases in Fe-based, Cu-based and other alloys [9–18]. Nevertheless, few studies have concentrated on solidification behaviors and morphological transitions of the constituent phases in Cr-Fe-C alloys. The morphological transitions of constituent phases directly depend on roughness parameters of the solid/liquid interface, entropies of fusion, chemical compositions and volume fractions of the constituent phases [19–21]. Entropy of melting is a convenient criterion for predicting crystallization behavior of the constituent phases. Values of α (α=ΔSf/R, ΔSf, entropy of fusion; R, gas constant), which are less than 2, imply a tendency toward non-faceted crystal growth, while higher α-values favor production of faceted crystal growth-forms. Electron backscatter diffraction has been commonly used to characterize crystallographic orientation, texture and grain boundary misorientation of the multi-phase compounds in several different materials [22–27]. The characteristic of Grain boundary examined by electron backscatter diffraction is useful to understand growth mechanism of the constituent phase. But few previous electron backscatter diffraction investigations have devoted to the grain boundary analysis to estimate growth mechanism of the constituent phase. Therefore, the aims of the current work are to investigate solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys containing various carbon contents. Solidification behaviors and morphological transitions of the constituent phases are systematically characterized by optical microscopy, field-emission scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction, wavelength dispersive spectrum and differential scanning calorimeter. 2. Experimental Procedures Cr-Fe-C alloys were prepared by gas tungsten arc welding technique to deposit various pure Cr and CrC (Cr:C= 4:1) alloy fillers onto the S45C medium-carbon steel. The dimension of S45C medium-carbon steel was 105 mm × 85 mm× 19 mm. Distinct pure Cr and CrC (Cr:C= 4:1) alloy fillers were mixed in a mechanical mixer to obtain a uniformly mixed powder. Then, these alloy fillers were subjected to a high pressure of 105.39 kg cm−2 to form the compact alloy fillers with the dimensions of 30 mm× 25 mm× 3 mm. Table 1 lists the alloy filler components. Bead-on-plate with oscillation gas tungsten arc welding was utilized to deposit the claddings. Fig. 1 shows the schematic illustration of gas tungsten arc welding for hard-facing. Table 2 reveals the welding parameter in this study |