دانلود رایگان ترجمه مقاله طراحی مختصری از کنترل کننده TCSC و PSS با به کارگیری تکنیک PSO – 2007
دانلود رایگان مقاله انگلیسی طرح هماهنگ کنترلر TCSC و PSS با به کارگیری تکنیک بهینه سازی ازدحام ذرات به همراه ترجمه فارسی
عنوان فارسی مقاله: | طرح هماهنگ کنترلر TCSC و PSS با به کارگیری تکنیک بهینه سازی ازدحام ذرات |
عنوان انگلیسی مقاله: | Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique |
رشته های مرتبط: | مهندسی برق، مهندسی الکترونیک، مکاترونیک، مهندسی کنترل و سیستم های قدرت |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله خوب میباشد |
توضیحات | ترجمه صفحات ۲ تا ۷ این مقاله موجود نیست. |
کد محصول | f353 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات مهندسی برق |
بخشی از ترجمه فارسی مقاله: چکیده- این مقاله کاربرد تکنیک بهینهسازی ازدحام ذرات (PSO) برای طرح هماهنگ پایدارساز سیستم قدرت (PSS) و یک کنترلر مبتنی بر جبرانساز سری کنترلشده با تریستور (TCSC) را معرفی میکند تا پایداری سیستم افزایش یابد. مساله طراحی PSS و TCSC به صورت یک مساله بهینهسازی حوزه زمان فرمولبندی میشود. برای جستجوی پارامترهای بهینه کنترلر، از الگوریتم PSO استفاده میشود. با کمینه کردن تابع هدف حوزه زمان، که در آن انحراف سرعت نوسانی روتور ژنراتور هم دخالت دارد، عملکرد پایداری سیستم بهبود مییابد. برای مقایسه توانمندی PSS و کنترلر TCSC، اینها ابتدا به صورت مستقل و سپس در یک حالت هماهنگ و برای کاربردهای منفرد و هماهنگ طراحی میشوند. کنترلرهای ارائهشده بر روی یک سیستم قدرت با اتصال ضعیف تست میشوند. تحلیل مقدارویژه و نتایج شبیهسازی غیرخطی ارائه میشوند تا کارائی روش طرح هماهنگ نسبت به طرح منفرد نشان داده شود. نتایج شبیهسازی نشان میدهند که کنترلرهای ارائه شده در میراکردن نوسانات فرکانس پائین ناشی از اغتشاشات کوچک مثل تغییر در توان مکانیکی ورودی و تنظیمات ولتاژ مرجع، موثر هستند. |
بخشی از مقاله انگلیسی: Abstract This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and nonlinear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting. Keywords—Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC. I. INTRODUCTION LOW frequency oscillations are observed when large power systems are interconnected by relatively weak tie lines. These oscillations may sustain and grow to cause system separation if no adequate damping is available [1]. Power system stabilizers (PSS) are now routinely used in the industry to damp out oscillations. However, during some operating conditions, this device may not produce adequate damping, and other effective alternatives are needed in addition to PSS. Recent development of power electronics introduces the use of flexible ac transmission system (FACTS) controllers in power systems. FACTS controllers are capable of controlling the network condition in a very fast manner and this feature of FACTS can be exploited to improve the stability of a power system [2]. Thyristor Controlled Series Compensator (TCSC) is one of the important members of FACTS family that is increasingly applied with long transmission lines by the utilities in modern power systems. It can have various roles in he operation and control of power systems, such as scheduling power flow; decreasing unsymmetrical components; reducing net loss; providing voltage support; limiting short-circuit currents; mitigating subsynchronous resonance (SSR); damping the power oscillation; and enhancing transient stability [3]-[6]. The problem of FACTS controller parameter tuning in the presence of PSS is a complex exercise as uncoordinated local control of FACTS controller and PSS may cause destabilizing interactions. To improve overall system performance, PSSs and FACTS Power Oscillation Damping (POD) controllers should operate in coordinated manner [7]-[8]. A conventional lead-lag controller structure is preferred by the power system utilities because of the ease of on-line tuning and also lack of assurance of the stability by some adaptive or variable structure techniques. Traditionally, for the small signal stability studies of a power system, the linear model of Phillips-Heffron has been used for years, providing reliable results. Although the model is a linear model, it is quite accurate for studying low frequency oscillations and stability of power systems. . It has also been successfully used for designing and tuning the classical PSSs [9]. The problem of FACTS controller parameter tuning is a complex exercise. A number of conventional techniques have been reported in the literature pertaining to design problems of conventional power system stabilizers namely: the eigenvalue assignment, mathematical programming, gradient procedure for optimization and also the modern control theory. Unfortunately, the conventional techniques are time consuming as they are iterative and require heavy computation burden and slow convergence. In addition, the search process is susceptible to be trapped in local minima and the solution obtained may not be optimal [10]. |