دانلود ترجمه مقاله تشخیص چهره با استفاده از طبقه بندی سطح فازی fisherface (ساینس دایرکت – الزویر ۲۰۰۵) (ترجمه ویژه – طلایی ⭐️⭐️⭐️)

elsevier

 

 

این مقاله انگلیسی ISI در نشریه الزویر در ۱۶ صفحه در سال ۲۰۰۵ منتشر شده و ترجمه آن ۲۵ صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

تشخیص چهره با استفاده از طبقه بندی سطح فازی fisherface

عنوان انگلیسی مقاله:

Face recognition using a fuzzy fisherface classifier

 

 

مشخصات مقاله انگلیسی
فرمت مقاله انگلیسی pdf
سال انتشار ۲۰۰۵
تعداد صفحات مقاله انگلیسی ۱۶ صفحه با فرمت pdf
نوع مقاله ISI
نوع نگارش مقاله پژوهشی (Research Article)
نوع ارائه مقاله ژورنال
رشته های مرتبط با این مقاله مهندسی کامپیوتر
گرایش های مرتبط با این مقاله هوش مصنوعی
چاپ شده در مجله (ژورنال) تشخیص الگو – Pattern Recognition
کلمات کلیدی تشخیص چهره، Eigenface؛ Fisherface، تحلیل مولفه های اصلی (PCA)، افتراق خطی فیشر (FLD)، نزدیک ترین کلاسیفایر همسایه فازی
کلمات کلیدی انگلیسی Face recognition – Eigenface – Fisherface – Principal component analysis (PCA) – Fisher’s linear discriminant (FLD) – Fuzzy nearest neighbor classifier
ارائه شده از دانشگاه گروه مهندسی برق، دانشگاه ملی چونگبوک، کره
نمایه (index) Scopus – Master Journals List – JCR
نویسندگان Keun-Chang Kwak, Witold Pedrycz
شناسه شاپا یا ISSN ۰۰۳۱-۳۲۰۳
شناسه دیجیتال – doi https://doi.org/10.1016/j.patcog.2005.01.018
ایمپکت فاکتور(IF) مجله ۹٫۵۵۹ در سال ۲۰۱۹
شاخص H_index مجله ۱۹۵ در سال ۲۰۲۰
شاخص SJR مجله ۲٫۳۲۳ در سال ۲۰۱۹
شاخص Q یا Quartile (چارک) Q1 در سال ۲۰۲۰
بیس نیست 
مدل مفهومی ندارد 
پرسشنامه ندارد 
متغیر ندارد 
رفرنس دارای رفرنس در داخل متن و انتهای مقاله
کد محصول ۱۰۸۳۹
لینک مقاله در سایت مرجع لینک این مقاله در نشریه Elsevier
نشریه الزویر

 

مشخصات و وضعیت ترجمه فارسی این مقاله
فرمت ترجمه مقاله pdf و ورد تایپ شده با قابلیت ویرایش
وضعیت ترجمه انجام شده و آماده دانلود
کیفیت ترجمه ویژه – طلایی ⭐️⭐️⭐️
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  ۲۵ صفحه با فونت ۱۴ B Nazanin
ترجمه عناوین تصاویر و جداول ترجمه شده است 
ترجمه متون داخل تصاویر ترجمه نشده است 
ترجمه متون داخل جداول ترجمه نشده است 
ترجمه ضمیمه ندارد 
ترجمه پاورقی ندارد 
درج تصاویر در فایل ترجمه درج شده است 
درج جداول در فایل ترجمه درج شده است 
درج فرمولها و محاسبات در فایل ترجمه  به صورت عکس درج شده است
منابع داخل متن به صورت عدد درج شده است 
منابع انتهای متن به صورت انگلیسی درج شده است  

 

فهرست مطالب

چکیده

۱- نظرات مقدماتی

۲- روش های متداول تشخیص چهره: مرور مختصر

۲-۱- روش Eigenface

۲-۲- روش fisherface

۳- رویکرد fisherface فازی

۴- مطالعات تجربی و آزمایشگاهی

۴-۱- پایگاه داده چهره ORL

۴-۲- پایگاه داده Yale

۴-۳- پایگاه داده چهره CNU (دانشگاه ملی چانگبوک)

۵- نکات پایانی و نتیجه گیری

 

بخشی از ترجمه

چکیده

در این مقاله، به تشخیص چهره با استفاده از رویکرد فازی fisherface و تقویت آن بر اساس مجموعه فازی میپردازیم. روش معروف fisherface نسبتاً به تغییرات اساسی در جهت نور، ژست صورت و حالت چهره، غیرحساس است. این امر با استفاده از تحلیل مولفه های اصلی و آنالیز افتراقی خطی فیشِر انجام می شود. آنچه باعث می شود اکثر روشهای تشخیص چهره (از جمله روش fisherface) شبیه هم باشند، فرض مربوط به سطح یکسان خصوصیت (ارتباط) هر چهره با کلاس متناظر می باشد. ما پیشنهاد می کنیم که سطح تدریجیِ تخصیص به کلاسی که به عنوان درجه عضویت در نظر گرفته می شود را با پیش بینی اینکه چنین افتراقی به بهبود نتایج طبقه بندی کمک می کند، ترکیب کنیم. به طور خاص، هنگام کار کردن روی بردارهای ویژگی حاصل از تبدیل PCA، ما تخصیص K مورد از نزدیکترین کلاس همسایه فازی را تکمیل می کنیم که باعث ایجاد درجه های متناظر از عضویت کلاس می شود. آزمایشات جامع بر روی پایگاه های داده چهره ORL، Yale و CNU (دانشگاه ملی چانگبوک) نشان دهنده نرخ بهبود طبقهبندی و کاهش حساسیت به تغییرات بین تصاویر چهره ی ایجاد شده با تغییرات در شدت روشنایی و جهت مشاهده میباشد. عملکرد در برابر سایر روش هایی که به طور معمول مورد استفاده قرار می گیرند، مانند eigenface و fisherface مقایسه می شود.

 

نظرات مقدماتی

هدف بیومتریک ثبت و استفاده از ویژگی های فیزیولوژیک یا رفتاری، احراز هویت شخصی یا مقاصد تایید فرد میباشد. تشخیص چهره یک روش بیومتریک طبیعی است که به طور مستقیم جذاب و ساده است. تشخیص چهره در حوزه های مختلفی مانند بینایی کامپیوتر، پردازش تصویر و تشخیص الگو مورد پژوهش قرار گرفته است. در عمل، تشخیص چهره به علت تغییرات قابل توجه در جهت نور، ژست صورت و حالات متنوع چهره، مساله ای بسیار دشوار است. معروف ترین تکنیک های طبقه بندی مورد استفاده برای تشخیص چهره، تکنیک های [eigenface [1 و [fisherface [2 هستند.

 

نکات پایانی و نتیجه گیری

ما با ارائه اطلاعات اصلاح (پالایش) شده در خصوص عضویت کلاس چهره های دارای برچسب باینری (الگوها)، نسخه تعمیم یافته ای از روش fisherface را برای تشخیص چهره پیشنهاد دادیم. این امر به نوبه خود به ما امکان می دهد تا ماتریس های پراکندگی فازی درون کلاس و بین کلاسی شکل دهنده ی بخش مرکزیِ کلاسیفایر اصلی fisherface را محاسبه کنیم. با انجام این کار ما قادر هستیم حساسیت این روش را نسبت به تغییرات زیاد بین تصاویر چهره ایجاد شده توسط تغییر نورپردازی، شرایط مشاهده و دید، و حالات چهره کاهش دهیم. نتایج تجربی و آزمایشگاهی هنگام اِعمال طبقه بندی بر روی پایگاه های داده چهره ORL، Yale و CNU، نرخ طبقه بندیِ همواره بهتری را در مقایسه با سایر روش های «استاندارد» مانند eigenface و fisherface نشان می دهند. به طور خاص، لازم به ذکر است که تا آنجا که به رخداد عدم قطعیت به علت تغییر زیاد از جمله نورپردازی و حالات چهره (Yale و CNU) مربوط می شود، این روش در محیط مجموعه های فازی توسعه داده شده که ویژگی ها و خصوصیات قوی تری را نشان داده اند. دلیل اینکه چرا روش ارائه شده عملکرد بهتری را حاصل می کند می تواند به این حقیقت نسبت داده شود که مجموعه های فازی ابهام و نامشخص بودن تصاویر چهره ای که با مولفه نورپردازی ضعیف تنزل رتبه داده شده اند را به طور موثری مدیریت می کنند.

 

بخشی از مقاله انگلیسی

Abstract

In this study, we are concerned with face recognition using fuzzy fisherface approach and its fuzzy set based augmentation. The well-known fisherface method is relatively insensitive to substantial variations in light direction, face pose, and facial expression. This is accomplished by using both principal component analysis and Fisher’s linear discriminant analysis. What makes most of the methods of face recognition (including the fisherface approach) similar is an assumption about the same level of typicality (relevance) of each face to the corresponding class (category). We propose to incorporate a gradual level of assignment to class being regarded as a membership grade with anticipation that such discrimination helps improve classification results. More specifically, when operating on feature vectors resulting from the PCA transformation we complete a Fuzzy K-nearest neighbor class assignment that produces the corresponding degrees of class membership. The comprehensive experiments completed on ORL, Yale, and CNU (Chungbuk National University) face databases show improved classification rates and reduced sensitivity to variations between face images caused by changes in illumination and viewing directions. The performance is compared vis-à-vis other commonly used methods, such as eigenface and fisherface.

 

Introductory comments

Biometrics is aimed at capturing and use ofphysiological or behavioral characteristics for personal identification or individual verification purposes. Face recognition is a natural intuitively appealing and straightforward biometric method. Face recognition has been researched in various areas such as computer vision, image processing, and pattern recognition. In practice, face recognition is a very difficult problem due to a substantial variation in light direction, different face poses, and diversified facial expressions. The most wellknown classification techniques used for face recognition are those ofeigenface [1] and fisherface [2].

 

Concluding remarks

We have proposed a generalized version ofthe fisherface method for face recognition by including refined information about class membership ofthe binary labeled faces (patterns). This in turn allowed us to compute fuzzy within and in-between class scatter matrices forming the core portion ofthe original fisherface classifier. By doing this we were able to reduce sensitivity ofthe method to substantial variations between face images caused by varying illumination, viewing conditions, and facial expression. Experimental results showed a consistently better classification rates in comparison to other “standard” methods such as eigenface and fisherface when applied to ORL, Yale, and CNU face databases. In particular, it is worth stressing that the method developed in the setting offuzzy sets revealed more robust characteristics as far as the uncertainty occurring due to large variation including illumination and facial expression (Yale and CNU) is concerned. The reason why the presented method yields a better performance can be attributed to the fact that fuzzy sets can efficiently manage the vagueness and ambiguity ofthe face images being degraded by poor illumination component.

 

تصویری از مقاله ترجمه و تایپ شده در نرم افزار ورد

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

تشخیص چهره با استفاده از طبقه بندی سطح فازی fisherface

عنوان انگلیسی مقاله:

Face recognition using a fuzzy fisherface classifier

 

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد.