دانلود رایگان ترجمه مقاله محتویات کمی و کیفی ساپونین در پنج خیار دریایی اقیانوس هند – MDPI 2010

 

عنوان فارسی مقاله محتویات کیفی و کمی ساپونین در پنج خیار دریایی از اقیانوس هند
عنوان انگلیسی مقاله Qualitative and Quantitative Saponin Contents in Five Sea Cucumbers from the Indian Ocean
رشته های مرتبط زیست شناسی، علوم گیاهی، میکروبیولوژی، علوم سلولی و مولکولی و  فیزیولوژی گیاهی
کلمات کلیدی Holothuriidae، گلیکوزیدهای تری ترپنی، طیف سنجی جرمی متوالی، همولیز، واکنش اورسینول
فرمت مقالات رایگان

مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند

همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد

کیفیت ترجمه کیفیت ترجمه این مقاله متوسط میباشد 
نشریه MDPI
مجله داروهای دریایی – Marine Drugs
سال انتشار 2010
کد محصول F567

مقاله انگلیسی رایگان (PDF)

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان (PDF)

دانلود رایگان ترجمه مقاله

خرید ترجمه با فرمت ورد

خرید ترجمه مقاله با فرمت ورد
جستجوی ترجمه مقالات جستجوی ترجمه مقالات زیست شناسی

  

فهرست مقاله:

چکیده

1. مقدمه

2. نتایج

2.1 مطالعه ی کیفی

2.2 مطالعه ی نیمه کمی

3. بحث

4. بخش آزمایشگاهی

4.1. نمونه برداری

4.2 استخراج و تخلیص ساپونین ها

4.3. طیف سنجی جرمی

4.4. مطالعه ی نیمه کمی

 

بخشی از ترجمه فارسی مقاله:

1. مقدمه
Holothurid ها، یا خیارهای دریایی، حیوانات دریایی هستند که با حرکت آهسته و نبود دفاع ساختاری قوی شناسایی می شوند. در نتیجه، در معرض شکار هستند. به عنوان دفاع، بیشتر خیارهای دریایی، در دیواره ی بدن و احشاء خود، متابولیت های ثانویه به نام ساپونین دارند. ساختار آنها بر اساس تری ترپن نوع لانوسترول با حلقه ی D متمایز دارای اسکلت گاما لاکتون به نام هولوستان و زنجیر کربوهیدرات با حداکثر شش قند مثل گلوکز (Glc)، 3-او-متیل گلوکز (MeGlc)، کویینوز (Qui) و زایلوز (Xyl) می باشد. به علاوه، در بعضی گونه ها، گروه های سولفات ممکن است در محل های خاص واحدهای قند وجود داشته باشند. چون این ترکیبات گستره ی وسیعی از فعالیت های دارویی را دارند، مطالعات متعدد در حال حاضر برای شناسایی اجزای جدید و منابع طبیعی جدید از ساپونین ها انجام می شوند.
از طرف دیگر، نقش های زیستی ساپونین ها در holothuroid ها هنوز مورد بحث است. در دیواره ی بدن فراوان هستند که علاوه بر نقش آن به عنوان مانع فیزیکی محافظ حیوان، بزرگترین اندام بدن نیز هست. همچنین به نظر می رسد به خصوص در لوله های Cuvierian، یک سیستم دفاعی مخصوص توسعه یافته در بعضی گونه های خیار دریایی از خانواده ی Holothuriidae، متمرکز باشند. این اندام، واقع در بخش خلفی حیوان، چند لوله دارد که می تواند پس از تحریک دفع شود. لوله های دفع شده به رشته های سفید چسبنده تبدیل می شوند که می توانند شکارچی ها را به دام بیندازند. با این وجود، تا به امروز، فقط نویسندگان کمی تفاوت های کیفی و کمی بین ساپونین های دیواره ی بدن و لوله ی Cuvierian را بررسی کرده اند (Kobayashi et al).
مطالعات اخیر نشان داده اند که روش های طیف سنجی جرمی (MS) برای شناسایی ساپونین ها بسیار ارزشمندند. درواقع، با استفاده از روش های MS مثل MALDI-MS (واجذب/یونش لیزری به کمک ماتریس-طیف سنجی جرمی) و LC-MS (کروماتوگرافی مایع-طیف سنجی جرمی)، می توانیم تفاوت های قابل ملاحظه بین ترکیب های ساپونین از دیواره بدن و لوله های Cuvierian Holothuria forskali را روشن کنیم. در این گونه ها، که اولین بار توسط Rodrigez مطالعه شدند، فقط پنج ساپونین بدون نشانه ای از اندام مبدأ توصیف شدند. با استفاده از MS، 12 ساپونین مختلف را در دیواره بدن و 26 تا در لوله های Cuvierian شناسایی کردیم و اجزای ایزومر زیادی را یافتیم. در ادامه ی بررسی گلیکوزیدهای تری ترپن از خیارهای دریایی خانواده ی Holothuriidae، مقایسه ی بزرگ مقیاسی روی ساپونین های پنج گونه ی گرمسیری از اقیانوس هند انجام دادیم. روش های MS برای شناسایی و آنالیز ساپونین ها استفاده شدند و مطالعه ی نیمه کمی نیز برای مقایسه ی کل محتویات ساپونین انجام شد. توجه خاص به تفاوت های بین دیواره بدن و لوله های Cuvierian در هر گونه پرداخته شد.

2. نتایج
2.1 مطالعه ی کیفی
ساپونین های پنج گونه استخراج شدند و با استفاده از MALDI-MS/MS و LC-MS/MS آنالیز شدند. روش MALDI-MS برای شناسایی و آنالیز مستقیم ترکیب های ساپونین استفاده شد، درحالی که روش LC-MS برای جداسازی کروماتوگرافی ایزومرها انجام شد (شکل تکمیلی 1). درواقع، درکار قبلی، وجود ایزومرها را در ترکیب های ساپونین نشان دادیم. همه ی روش های استخراج و تخلیص و آنالیزهای طیف سنجی جرمی مشابه Van Dyck بود.
شکل 1. مقایسه بین الگوهای تقسیم در اثر برخورد holothurin A (A) و holothurinoside A (B). فلش های کامل و نقطه دار دو الگوی تقسیم ممکن هستند (رجوع به شکل 2 برای ساختارهای مولکولی این ساپونین ها و قطعه های آنها).

به عنوان مثال، شکل 1 گستره ی MS متوالی یون های holothurin A (1) و holothurinoside A (10) را نشان می دهد. قابل ذکر است که یون های مشاهده از کاتیونیزاسیون (اتصال یون سدیم) مولکول های خنثی روی ESI یا MALDI به دست می آید. بر اساس گستره ی MS/MS و Van Dyck، ساختارهای مولکولی ساپونین ها با شناسایی انتقال های جرمی بین قله های متوالی تقسیم در اثر برخورد به دست می آید. به عنوان مثال، شکل 1A، دو توالی رقابتی تجزیه را با فلش نشان دهنده ی از دست رفتن پیاپی سدیم مونوهیدروژن سولفات (NaHSO4)، آگلیکون، زایلوز، کویینوز، گلوکز و 3-او-متیل گلوکز از یون های holothurin A (1) (m/z 1243.5) نشان می دهد. این توالی تقسیم در شکل 2A آمده است. به طور مشابه، شکل 1B از دست رفتن پیاپی آگلیکون، گلوکز و زایلوز و به طور رقابتی کویینوز، گلوکز و 3-او-متیل گلوکز را نشان می دهد (همچنین شکل 2B). شناسایی این توالی تقسیم باعث شناسایی یون ها با m/z 1303.3 به عنوان کاتیون holothurinoside A (10) می شود.

بخشی از مقاله انگلیسی:

1. Introduction

Holothuroids, also known as sea cucumbers, are marine animals that are characterized by a slow motion and the absence of prominent structural defenses. As a direct consequence, they are vulnerable to predation. As a mean of defense, most sea cucumbers contain, in their body wall and viscera, secondary metabolites named saponins [1–4]. Their structures are based on a lanosterol-type triterpene with a distinctive D-ring with fused γ-lactone skeleton named holostane and a carbohydrate chain containing up to six sugar residues such as glucose (Glc), 3-O-methylglucose (MeGlc), quinovose (Qui), and xylose (Xyl) [5,6]. In addition, in some species, sulfate groups may be present at certain positions of the sugar units [7]. Because these compounds possess a large spectrum of pharmacological activities [8], numerous studies are being currently conducted to identify new congeners and new natural sources of saponins. On the other hand, the biological roles of saponins in holothuroids are still very speculative [9,10]. They are abundant in the body wall which, in addition to its role as a physical barrier protecting the animal, is also the largest organ [3,11,12]. They also appear to be particularly concentrated in the Cuvierian tubules, a specialized defense system developed by some sea cucumber species, all belonging to the family Holothuriidae [3,4,11]. This organ, located in the posterior part of the animal, consists of multiple tubules that can be expelled by the individual after stimulation [13,14]. Expelled tubules lengthen into sticky white threads that may entangle potential predators. To date, however, only a few authors have investigated the qualitative and quantitative differences between body wall and Cuvierian tubule saponins (see e.g., Kobayashi et al. [11]). Recent studies have demonstrated that mass spectrometry (MS) procedures represent very valuable techniques for the detection and identification of saponins [15–17]. Indeed, using MS methods such as MALDI-MS (Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry) and LC-MS (Liquid Chromatography-Mass Spectrometry) techniques, we were able to highlight remarkable differences between the saponin mixtures from the body wall and the Cuvierian tubules of Holothuria forskali [18]. In this species, which was first studied by Rodrigez et al. [19], only five saponins were described, with no indication on their organ of origin. Using MS, we detected 12 different saponins in the body wall and 26 in the Cuvierian tubules and highlighted the occurrence of many isomer congeners [18]. In continuation of our study on triterpene glycosides from sea cucumbers of the family Holothuriidae, we carried out a large-scale comparative investigation on saponins from five tropical species from the Indian Ocean. MS methods were used to detect and analyze saponins and a semi-quantitative study was also performed to compare total saponin contents. A peculiar attention was paid to the differences that could occur between the body wall and the Cuvierian tubules in a given species.

2. Results

2.1. Qualitative study

Saponins of the five species have been extracted and analyzed using MALDI-MS/MS and LC-MS/MS. MALDI-MS technique was used for direct detection and analysis of saponin mixtures, while the LC-MS technique was performed to achieve chromatographic separation of potential isomers (see Supplementary Figure 1 for a typical example). Indeed, in a previous work, we highlighted the  presence of isomers in such saponin mixtures [18]. The entire extraction and purification procedures and the mass spectrometric analyses were the same as those used in Van Dyck et al. [18]. Figure 1. Comparison between the collision-induced fragmentation patterns of holothurin A (A) and holothurinoside A (B). Full and dotted arrows are two possible fragmentation patterns (see Figure 2 for molecular structures of these saponins and their respective fragments). As a characteristic example, Figure 1 presents the tandem MS spectra of holothurin A (1) and of holothurinoside A (10) ions. It is noteworthy that the observed ions arise from cationization (Na+ attachment) of the neutral molecules upon ESI or MALDI. Based on MS/MS spectra and as described in detail in Van Dyck et al. [18], the molecular structures of the saponins can be obtained by the identification of the mass transitions between the successive collision-induced fragmentation peaks. For instance, in Figure 1A, two competitive sequences of decompositions are represented by arrows showing the consecutive losses of sodium monohydrogenosulfate (NaHSO4), of the aglycone, of xylose, and of quinovose, glucose and 3-O-methylglucose from the mass-selected holothurin A (1) ions (m/z 1243.5). This sequence of fragmentation is exemplified in Figure 2A. Similarly, Figure 1B is characterized by the consecutive losses of the aglycone, glucose and xylose, and, competitively, of quinovose, glucose and 3-O-methylglucose (see also Figure 2B). The detection of this sequence of fragmentations allows the identification of the m/z 1303.3 ions as cationized holothurinoside A (10).

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا