دانلود رایگان ترجمه مقاله حل پاسخ دینامیکی سیستم های متصل به وسایل نقلیه ریلی (نشریه الزویر ۲۰۱۷) (ترجمه رایگان – برنزی ⭐️)

elsevier

 

 

این مقاله انگلیسی ISI در نشریه الزویر در ۱۵ صفحه در سال ۲۰۱۷ منتشر شده و ترجمه آن ۲۸ صفحه میباشد. کیفیت ترجمه این مقاله رایگان – برنزی ⭐️ بوده و به صورت کامل ترجمه شده است.

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

یک روش تکراری برای حل پاسخ دینامیکی سیستم های متصل به وسایل نقلیه ریلی بر اساس پیش بینی نیروهای چرخ- ریل

عنوان انگلیسی مقاله:

An iterative method for solving the dynamic response of railway vehicletrack coupled systems based on prediction of wheel-rail forces

 
 
 
 

 

مشخصات مقاله انگلیسی (PDF)
سال انتشار ۲۰۱۷
تعداد صفحات مقاله انگلیسی ۱۵ صفحه با فرمت pdf
رشته های مرتبط با این مقاله مهندسی مکانیک
گرایش های مرتبط با این مقاله سیستم محرکه خودرو، ساخت و تولید، طراحی جامدات
چاپ شده در مجله (ژورنال) ساختارهای مهندسی – Engineering Structures
کلمات کلیدی برهم کنش دینامیک چرخ- ریل، روش تکراری، پیش بین خطای حداقل مربعات وزنی، رابطه تماس بین چرخ-ریل، نامنظم بودن مسیر
رفرنس دارد  
کد محصول F1427
نشریه الزویر – Elsevier

 

مشخصات و وضعیت ترجمه فارسی این مقاله 
وضعیت ترجمه انجام شده و آماده دانلود
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  ۲۸ صفحه (۱ صفحه رفرنس انگلیسی) با فونت ۱۴ B Nazanin
ترجمه عناوین تصاویر و جداول ترجمه شده است 
ترجمه متون داخل تصاویر ترجمه نشده است 
ترجمه متون داخل جداول ترجمه نشده است 
درج تصاویر در فایل ترجمه درج شده است 
درج جداول در فایل ترجمه درج نشده است  
کیفیت ترجمه کیفیت ترجمه این مقاله پایین میباشد 

 

فهرست مطالب

چکیده
۱- مقدمه
۲-مدل دینامیک چرخ-ریل
۲- ۱ معادلات حرکت زیر سیستم
۲-۳ مدل تعامل چرخ-ریل
۳- روش تکراری بر اساس پیش بینی
۴- روش پیش بینی خطای حداقل مربعات وزنی
۵-مثال های عددی
۵-۱ بی نظمی مسیر دوره ای
۵-۲ بی نظمی مسیر اندازه گیری شده
۶ –نتیجه گیری

 

بخشی از ترجمه

چکیده
 یک روش تکراری بر اساس پیش بینی نیروهای چرخ- ریل برای تعیین پاسخ دینامیک و پویای سیستم وسیله نقلیه ریلی ارایه شده است. ایده کلیدی روش موجود، اصلاح ارزش یا مقدار آغازین هر مرحله در طی تکرار با پیش بینی است. روش تکراری مرسوم با تکرار مرحله فعلی در مقدار تبدیل شده قبلی نیروی چرخ- ریل شروع می شود. با این حال در این روش، نیروهای چرخ-ریل پیش بینی شد توسط پیش بین خطای حداقل مربعات وزنی به عنوان مقدار شروع برای مرحله فعلی استفاده می شود.معادلات حرکت وسیله نقلیه و زیر سیستم ها به طور جدا تثبیت شده و به طور مکرر حل می شوند. بر طبق پاسخ ریل و مجموع چرخ ها و با در نظر گرفتن ناهمواری مسیر، نیروهای ریل –چرخ پیش بینی شده با مدل تعامل چرخ- ریل اصلاح می شود که در آن روابط هندسی تماس ریل- چرخ و نیروهای خزش ریل –چرخ در نظر گرفته می شوند. روش استراحت برای حل مسئله انتشار عددی در فرایند تکراری استفاده می شود.
یک وسیله نقلیه متحرک که در یک مسیر انعطاف پذیر دو لایه ای حرکت می کند در این مطالعه در نظر گرفته شد. صحت روش پیشنهادی با مقایسه نتایج حاصل از روش فعلی با نتایج حاصل از نرم افزار تجاری NUCRAS تایید شده و کارایی با مقایسه با روش تکراری سنتی تایید می شود.نتایج عددی نشان می دهد که روش فعلی نه تنها نتایج مشابهی با نرم افزار NUCRAS از حیث صحت می دهد بلکه موجب صرفه جویی ۲۵ درصدی در هزینه های محاسباتی در مقایسه با روش تکراری سنتی می شود. با توجه به ارتباط تماس چرخشی غیر خطی، به طور کامل در نظر گرفته شده است، روش حاضر می تواند نتایج دقیق تر از مدل کامپوننت وسیله نقلیه را دریافت کند. در ضمن، کارایی روش حاضر با استفاده از پیش بینی نیروهای ریل چرخ با پیش بینی کننده WLSE افزایش می یابد.
۱- مقدمه
مدل پویا سیستم متصل به وسیله نقلیه و روش راه حل آن برای یک سری مطالعات پیشرفته مانند ارزیابی ایمنی در حال اجرا و قابلیت راحتی سواری از قطارهای با سرعت بالا، پیش بینی سایش چرخ و سر و صدای ارتعاش ضروری است. نتایج عددی می تواند به عنوان راهنمایی نظری برای پیدا کردن علت برخی از مشکلات مهندسی عملی مانند دور چرخ ها، راه راه ریخته گری، شناسایی منابع ارتعاش یا سر و صدا، و توسعه راه حل ها یا درمان های مربوط به این مشکلات استفاده شود. بنابراين اهميت بهينه سازي پاسخ ديناميک سيستم ریل- وسیله نقلیه به طور موثر و دقيق است. پاسخ پویای سیستم متصل به وسیله نقلیه می تواند در فرکانس یا دامنه زمان حل شود [۱]. روش فركانس براي راه حل كارآمدي از طول نامحدود و ساختارهاي خطي دوره اي خصوصا براي راه حل تعامل ديناميكي چرخدنده در فركانس هاي بالا مورد استفاده قرار مي گيرد، اما راه حل حوزه زماني لازم است كه در آن ناهماهنگي هاي مهمي نظير ارتباط هندسه تماس چرخ و چوب برای حل پاسخ دینامیکی خودرو و سیستم مسیر در حوزه زمان، عمدتا دو روش در دسترس وجود دارد: روش متصل و روش تکراری. روش پیوند به عنوان یک کل سیستم و زیر سیستم های مسیر را در نظر گرفته و معادلات سیستم متصل را بدون هیچ گونه تکرار با یک روش ادغام گام به گام حل می کند. با این حال، ماتریس ضریب سیستم با توجه به موقعیت وسایل نقلیه در مسیر متفاوت است و باید در هر گام زمانی به روز شود و تجزیه شود. این کارآیی محاسباتی را کاهش می دهد. یکی دیگر از نقاط ضعف این است که شکل گیری ماتریس ضریب بستگی به مدل های وسیله نقلیه و ردیابی دارد، به عبارت دیگر، اگر یک نوع جدید از وسیله نقلیه یا مسیر معرفی شده باشد، باید همه ضرایب را تغییر داد. روش تکراری می تواند به طور موثر از این کاستی ها اجتناب کند.
در روش تکراری، کل سیستم به دو زیر سیستم در رابط خودرو و مسیر تقسیم می شود. دو زیر سیستم با ایجاد تعادل نیروها و سازگاری جابجایی در نقاط تماس بین چرخ ها و ریل ها متصل می شوند. معادلات حرکت دو زیرسیستم به طور جداگانه با یک روش تکرار حل شده است. سبز و کبون [۲،۳] شامل ساختار بارهای وسیله نقلیه با پاسخ مودال پل برای پیش بینی پاسخ دینامیکی آن در یک مجموعه داده شده از بارهای چرخ وسیله نقلیه بود و این روش را برای تعامل پویا بین وسیله نقلیه و پل با روش تکرار . یانگ و فندر [۴] یک روش تکراری برای حل پاسخ دینامیکی پل یانگ تسه رودخانه در ووهان تحت یک قطار متحرک با ۲ لوکوموتیو و ۴ وسیله نقلیه حمل و نقل ارائه کردند. زو و همکاران [۵] تجزیه و تحلیل دینامیکی سیستم های پل متحرک و سیستم های مجهز به کابل در باد متقابل را با روش تکراری انجام داد. هارنت (۶)یک مدل عددی را توسعه دادند که یک قطار چند منظوره سهبعدی و یک پل عنصر محدود را برای بررسی اثرات پارامترهای مختلف مانند سرعت قطار، فرکانس قطار به پل، جرم و فاصله نسبت ها، کاهش دماي پل، در پاسخ ديناميک پل هاي راه آهن با روش تجديد نظري اصلاح شده نيوتن رافسون. ژانگ و همکاران [۷] یک مدل دینامیکی دوبعدی بادی را پیشنهاد کرد که اثر محافظتی برج پل را با موانع باد مثلثی مورد بررسی قرار داد و معادلات دینامیکی پل خودرو را با بارهای خارجی متفاوت تغییر داد. نگوین و همکاران [۸] وسایل نقلیه و زیر ساخت را به عنوان دو سیستم جداگانه در نظر گرفتند، هرچند یک مدل تماس چرخ-ریل پیشنهاد شده بود و یک طرح تکرار جدید برای حل مسائل نیروی تماس چرخ و ردیابی تماس از دست داد. هاوک و قالی [۹] یک روش تحلیلی را پیشنهاد دادند که به نام “روش تدریجی تکرار پویا” (IDSM) برای حل یک پاسخ از یک سیستم پل اسلحه برقی که به وسیله کامیون های چند محور بدون در نظر گرفتن اثرات زبری از آن عبور می کرد، پیشنهاد کرد. مارشلی و همکاران. [۱۰] با تعامل یک پل پیوسته چند اسپیندل مدل شده توسط صفحات ایزوتروپیک با وسیله نقلیه مدل سازی شده توسط هفت درجه از سیستم آزادی جرم محور آزاد به سرعت ثابت شد و پاسخ دینامیکی خودرو و پل را به صورت تکراری محاسبه کرد. فراری و همکاران [۱۱] تعامل پویا بین یک وسیله نقلیه مسافری و یک پل مورد مطالعه قرار گرفت و عملکرد و کارایی دو روش تکرار را که در طول تاریخ تمام وقت (WTH) یا در گام زمانی تک (STS) انجام می شد، مقایسه کرد. وینچنزی و همکاران [۱۲] تعامل پویا بین قطارها و پل را تجزیه و تحلیل کرد و یک بررسی پارامتری را انجام داد، از جمله تاثیر سرعت سفر و وزن قطار در پاسخ دینامیکی. لی و همکاران [۱۳] یک الگوریتم تکرار متقابل را برای حل پاسخ دینامیکی خودرو CRH3 قطار چین و سیستم جفت ریل دنده ارائه داد. لی و همکاران [۱۴] یک روش عددی کامپیوتری برای تجزیه و تحلیل سیستم های متحرک وسیله نقلیه نقلیه از ویژگی های غیر خطی و بررسی همگرایی طرح های تکراری محاسبات با و بدون جهش چرخ. در روش تکرار، تجزیه ماتریس ضریب در هر گام زمانی می تواند اجتناب شود و بنابراین یک روش راه حل کارآمد می تواند جداگانه بر اساس ویژگی های ساختاری هر زیرسیستم توسعه یابد. اما لازم به ذکر است که فرایند تکرار ممکن است به آسانی به هم نزدیک نباشند و یا به طور آهسته همگام شوند، مخصوصا برای سازه های بزرگ. این معایب دامنه استفاده از روش تکرار محدود را محدود می کند
برای غلبه بر نقایص روش های راه حل فوق، یک روش راه حل تکراری بر اساس پیش بینی نیروهای ریل چرخ در این مقاله ارائه شده است. نیروهای رانش چرخ ها توسط پیش بینی کننده WLSE پیش بینی شده و سپس به معادلات حرکت وسیله نقلیه تعویض می شوند و به طور جداگانه مسیر را برای حل پاسخ دینامیکی هر زیرسیستم می دهند. با توجه به پاسخ چرخ ها و ریل ها، با توجه به بی نظمی مسیر، نیروهای تماس پیش بینی شده با مدل تعامل چرخ-rail اصلاح می شود. اگر تفاوت بین نیروهای اصلاح شده و پیش بینی شده بیشتر از تحمل مشخص شده باشد، تکرار ادامه می یابد تا همگرایی به دست آید. تکنیک آرام سازی برای جلوگیری از مشکل انتشار عددی در روند تکرار پذیرفته شده است. با در نظر گرفتن وسیله نقلیه CRH2 [15] بر روی یک مسیر مستقیم به عنوان مثال، پاسخ پویای وسیله نقلیه به انواع مختلف بی نظمی های مسیر، در حوزه زمان با روش فعلی، روش تکرار معمول و NUCARS، حل می شود. دقت روش فعلی با مقایسه دقیق نتایج عددی با NUCARS نشان داده شده است و کارایی با مقایسه هزینه های محاسبات با روش تکراری متعارف بدست می اید

 

بخشی از مقاله انگلیسی

Abstract

An iterative method based on prediction of wheel-rail forces is presented to determine the dynamic response of railway vehicle-track coupled systems. The key idea of the present method lies in the modification of the starting value of each step during the iteration by prediction. The conventional iterative method begins iteration of the current step at the previously converged value of the wheel-rail forces. However, in the present method, the predicted wheel-rail forces by the Weighted Least-Squares Error (WLSE) predictor are used as the starting value for the current step. The equations of motion of the vehicle and the track subsystems are established separately and solved iteratively. According to the response of the wheelsets and the rails, and considering the track irregularity, the predicted wheel-rail forces are corrected by the wheel-rail interaction model in which detailed wheel rail contact geometry relations and nonlinear wheel rail creep forces are taken into account. The relaxation technique is adopted to solve the problem of numerical diffusion in the iterative process.

A moving vehicle travelling on a two layer flexible track is considered in this study. The accuracy of the proposed method is verified by comparing the results obtained from the present method with the results from the commercial software NUCARS and the efficiency are verified by comparing with the conventional iterative method. Numerical results show that the present method not only gives results comparable to those using the NUCARS software in terms of accuracy, but also saves at least 25% computational cost compared with the conventional iterative method. With the nonlinear wheel-rail contact relation fully considered, the present method can get more detailed results of the vehicle-track coupled model. Meanwhile, the efficiency of the present method is enhanced by means of prediction of wheel-rail forces with the WLSE predictor.

۱- Introduction

The dynamic model of the vehicle-track coupled system and its solution method are essential to a series of advanced studies, such as evaluation of running safety and ride comfort performance of high speed trains, prediction of wheel wear and vibration noise. The numerical results can be used as a theoretic guidance for finding out the cause of some practical engineering problems such as out of round wheels, rail corrugation, identifying the sources of vibration or noise, and developing solutions or treatments to those problems. Therefore, it is of significance to solve the dynamic response of the vehicle-track coupled system efficiently and accurately.

The dynamic response of the vehicle-track coupled system can be solved in either the frequency or the time domain [1]. The frequency method is applicable for efficient solution of infinite length or periodic track structures, especially for the solution of wheelrail dynamic interaction at high frequencies, but the time domain solution appears to be necessary where there are significant nonlinearities such as wheel rail contact geometry relation and stickslip.

For solving the dynamic response of the vehicle and track system in time domain, there are mainly two methods available: the coupled method and the iterative method. The coupled method considers the vehicle and the track subsystems as a whole and solves the coupled system equations without any iteration by a step-by-step integration method. However, the system coefficient matrices vary according to the position of the vehicles on the track and must be updated and decomposed at every time step. This will reduce the computational efficiency. Another drawback is that the formulation of coefficient matrices depend on both the vehicle and track models, that is to say, all coefficients must be changed if a new type of vehicle or track is introduced. The iterative method can effectively avoid these shortcomings.

In the iterative method, the whole system is divided into two subsystems at the interface of vehicle and track. The two subsystems are coupled by enforcing equilibrium of forces and compatibility of displacements at the contact points between the wheels and the rails. The equations of motion of the two subsystems are solved separately with an iterative procedure. Green and Cebon [2,3] involved convolution of the vehicle loads with modal response of the bridge to predict its dynamic response under a given set of vehicle wheel loads and extended this method to include dynamic interaction between the vehicle and bridge by an iterative procedure. Yang and Fonder [4] presented an iterative method to solve the dynamic response of the Yangtze-River Bridge at Wuhan under a moving train with 2 locomotives and 4 freight vehicles. Xu et al. [5] performed dynamic analysis of coupled train and cable-stayed bridge systems in cross winds with an iterative procedure. Majka and Hartnett [6] developed a numerical model which incorporated a three dimensional multi-body train and a finite element bridge to investigate the effects of various parameters, such as the speed of the train, train-to-bridge frequency, mass and span ratios, bridge damping, on the dynamic response of railway bridges with a modified Newton-Raphson iterative procedure. Zhang et al. [7] proposed a coupled wind-vehicle-bridge dynamic model which considered the shielding effect of bridge tower with triangular wind barriers and solved the vehicle-bridge dynamic equations with time-varying external loads. Nguyen et al. [8] considered the vehicles and substructure as two separate systems interacting though a proposed wheel-rail contact model and proposed a new iterative scheme for solution of wheel-rail contact forces and checking contact loss. Hawk and Ghali [9] proposed an analytical procedure called the iterative dynamic substructuring method (IDSM) to solve the response of a beam-slab bridge system traversed by multi-axle trucks without consideration of roughness effects. Marchesiello et al. [10] dealt with the interaction of a multi-span continuous bridges modelled by isotropic plates with a vehicle modelled by seven degrees of freedom mass-spring-damper system moving at constant speed and computed the dynamic response of the vehicle and the bridge iteratively. Feriani et al. [11] studied the dynamic interaction between a travelling vehicle and a bridge and compared both the performance and the efficiency of the two iterative procedures which performed either on the whole time history (WTH) or in the single time step (STS). Vincenzi et al. [12] analyzed the dynamic interaction between trains and a bridge and carried out a parametric investigation, including the influence of the travelling speed and the weight of the train on dynamic response. Lei et al. [13] presented a cross iteration algorithm to solve the dynamic response of the China’s high speed train CRH3 vehicle and slab track coupling system. Li et al. [14] developed a computer-aided numerical method for analyzing coupled railway vehicle-bridge systems of nonlinear features and investigated the convergence of iterative computation schemes with and without wheel jumps. In the iterative method, the decomposition of the coefficient matrices at every time step can be avoided and thus a more efficient solution method can be developed separately according to the structural characteristics of each subsystem. But it is worth noting that the iteration process may not be easy to converge or converge slowly, especially for large-scale structures. These disadvantages restrict the scope of application of the iterative method.

To overcome the drawbacks of the aforementioned solution methods, an iterative solution method based on prediction of wheel rail forces is proposed and verified in this paper. The wheel-rail forces are predicted by the WLSE predictor and then substituted into the equations of motion of the vehicle and track separately to solve the dynamic response of each subsystem. According to the response of the wheelsets and the rails, considering the track irregularity, the predicted contact forces are corrected by the wheel-rail interaction model. If the difference between the corrected and the predicted forces is greater than the specified tolerance, iteration continues until convergence is achieved. The relaxation technique is adopted to avoid the problem of numerical diffusion in the iterative process. Taking the CRH2 vehicle [15] running on a straight track as an example, the dynamic response of the vehicle to different types of track irregularities is solved in time domain by the present method, the conventional iterative method and NUCARS, respectively. The accuracy of the present method is demonstrated through a detailed comparison of numerical results with NUCARS and the efficiency is verified by comparing the computation cost with the conventional iterative method..

 

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

یک روش تکراری برای حل پاسخ دینامیکی سیستم های متصل به وسایل نقلیه ریلی بر اساس پیش بینی نیروهای چرخ- ریل

عنوان انگلیسی مقاله:

An iterative method for solving the dynamic response of railway vehicletrack coupled systems based on prediction of wheel-rail forces

 
 
 
 

 

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *