این مقاله انگلیسی ISI در نشریه تیلور و فرانسیس در 47 صفحه در سال 2017 منتشر شده و ترجمه آن 27 صفحه میباشد. کیفیت ترجمه این مقاله رایگان – برنزی ⭐️ بوده و به صورت ناقص ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
روشهای مدلسازی و مانیتورینگ برای داده های فضایی و تصویری |
عنوان انگلیسی مقاله: |
Modeling and monitoring methods for spatial and image data |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 2017 |
تعداد صفحات مقاله انگلیسی | 47 صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | مهندسی مکانیک، مهندسی صنایع |
گرایش های مرتبط با این مقاله | تولید صنعتی، داده کاوی، ساخت و تولید |
چاپ شده در مجله (ژورنال) | مهندسی کیفیت – Quality Engineering |
کلمات کلیدی | مانیتورینگ کیفیت به روش آماری، کنترل فرایند به روش آماری، سطوح، اشکال، تصاویر، تولید افزوده، سیگنال، مانیتورینگ پروفایل، داده های عملیاتی |
رفرنس | دارد ✓ |
کد محصول | F1536 |
نشریه | تیلور و فرانسیس – Taylor & Francis |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 27 صفحه (7 صفحه رفرنس انگلیسی) با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
درج تصاویر در فایل ترجمه | درج نشده است ☓ |
درج جداول در فایل ترجمه | درج نشده است ☓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله پایین میباشد |
توضیحات | ترجمه این مقاله به صورت ناقص انجام شده است. |
فهرست مطالب |
چکیده |
بخشی از ترجمه |
چکیده
1- مقدمه |
بخشی از مقاله انگلیسی |
Abstract Intelligent sensing and computerized data analysis are inducing a paradigm shift in industrial statistics applied to discrete part manufacturing. Emerging technologies (e.g., additive manufacturing, micro-manufacturing) combined with new inspection solutions (e.g., non-contact systems, X-ray computer tomography) and fast multistream high-speed sensors (e.g., videos and images; acoustic, thermic, power and pressure signals) are paving the way for a new generation of industrial big-data requiring novel modeling and monitoring approaches for zero-defect manufacturing. Starting from real industrial problems, some of the main challenges to be faced in relevant industrial sectors are discussed. Viable solutions and future open issues are specifically outlined.
1- Introduction There is a widespread consensus that smartness and big data availability are technological drivers of the fourth industrial revolution, i.e., Industry 4.0. As in all previous revolutions, the fourth is driven by technological innovations. Water- and steam-powered mechanical manufacturing were driving forces for Industry 1.0; electricity and assembly lines drove Industry 2.0; and the introduction of computers for automation purposes catalyzed Industry 3.0. Unrivaled advances in data volumes, computational power and connectivity; new forms of human-machine interactions via augmented reality; and emerging advance in robotics and 3D printing are paving the way to the new generation of digital production in Industry 4.0. (Brettel, et al, 2014; Baur and Wee, 2015). Industry 4.0 involves many different technological advances (Rüßmann et al., 2015, Figure 2), which require novel approaches for data analysis (Lee, Bagheri and Kao, 2014 and 2015; Jazdi, 2014; Wang, Törngren and Onori, 2015). Overall, the increase of data volume, variety and velocity (i.e., the ―big data‖ framework) poses several challenges for industrial statisticians and quality engineers (Steinberg, 2016; Megahed and Jones-Farmer , 2015; Jones-Farmer, Ezell and Hazen, 2014). For example, the highly interconnected cyber-physical systems (Lee, Bagheri and Kao, 2014 and 2015; Jazdi, 2014; Wang, Törngren and Onori, 2015) imply multiple streams of real and virtual data that have to be appropriately fused and analyzed. Cyber-security and industrial internet of things (Wells et al. 2014, Turner et al., 2015) ask for new approaches for data cloud monitoring and optimization (Aceto et al., 2015). Pervasive sensing of industrial processes and operators (to design machine-human interfaces) causes a huge amount of image and signal data that have to be appropriately studied. Discussing all the effects of Industry 4.0 on industrial data modeling, monitoring and control is out of this paper scope. In this paper, the attention will be limited to challenges and opportunities in modeling and monitoring quality data of high-value-added mechanical products. Therefore, industrial sectors as the aerospace, automotive, tooling and machine-tools production will be specifically targeted. Furthermore, attention will be specifically devoted to the manufacturing stage of these products’ lifetime. Throughout the paper, real industrial problems will be specifically introduced as motivating examples. Special attention will be devoted to some emerging manufacturing processes (3D printing or additive manufacturing – AM) and new dimensional and volumetric metrology solutions (i.e., non-contact metrology sensors, high-speed videos, X-ray computer tomography – CT). For the sake of simplicity, the discussion will be organized in two main sections. The first will focus on quality features concerning products, while the second section will concern process data. In short, we will discuss approaches for modeling and monitoring product and process quality data, separately. This distinction is clearly artificial, as industrial practitioners are usually asked to face both the product and process data streams at the same time and link these two sources of information to define appropriate actions to drive the process toward zero-defect manufacturing. The two sections will be organized following a similar structure. The industrial background and some motivating examples will be firstly introduced. Then, existing solutions for data modeling and monitoring will be briefly described. Eventually, directions for future research will be presented in the conclusions.. |
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
روشهای مدلسازی و مانیتورینگ برای داده های فضایی و تصویری |
عنوان انگلیسی مقاله: |
Modeling and monitoring methods for spatial and image data |
|