دانلود ترجمه مقاله رویکرد موازی موثر برای دیتا ماینینگ ژنتیکی فازی – مجله الزویر

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی

 

عنوان فارسی مقاله:

روش موازی اثربخش برای داده کاوی ژنتیکی – فازی

عنوان انگلیسی مقاله:

An effective parallel approach for genetic-fuzzy data mining

  • برای دانلود رایگان مقاله انگلیسی با فرمت pdf بر روی عنوان انگلیسی مقاله کلیک نمایید.
  • برای خرید و دانلود ترجمه فارسی آماده با فرمت ورد، روی عنوان فارسی مقاله کلیک کنید.

 

 

مشخصات مقاله انگلیسی (PDF)
سال انتشار  2014
تعداد صفحات مقاله انگلیسی 8 صفحه با فرمت pdf
تعداد صفحات ترجمه تایپ شده 23 صفحه با فرمت word
رشته های مرتبط با این مقاله مهندسی فناوری اطلاعات، مهندسی کامپیوتر و مهندسی صنایع
گرایش های مرتبط با این مقاله  الگوریتم و محاسبات، داده کاوی و امنیت اطلاعات
مجله سیستم خبره و کاربردهای آن (Expert Systems with Applications)
دانشگاه  گروه علوم کامپیوتر و مهندسی اطلاعات، دانشگاه ملی کائوسیونگ، تایوان
کلمات کلیدی  داده کاوی، مجموعه های فازی، الگوریتم ژنتیک، پردازش موازی، قاعده اتحادیه
شناسه شاپا یا ISSN ISSN 0957-4174
رفرنس دارد
لینک مقاله در سایت مرجع لینک این مقاله در نشریه Elsevier
نشریه Elsevier

 


  • بخشی از ترجمه:

 

چکیده
مهم‌ترین کاربرد داده کاوی در تلاش‌هایی است که برای استنتاج قواعد وابستگی از داده‌های تراکنشی صورت می‌گیرد. در گذشته، از مفاهیم منطق فازی و الگوریتم‌های ژنتیکی برای کشف قواعد وابستگی فازی سودمند و توابع عضویت مناسب از مقادیر کمی استفاده می‌کردیم. با وجود این، ارزیابی مقادیر برازش نسبتاً زمان بر بود. به دلیل افزایش‌های شگرف در قدرت محاسباتی قابل دسترسی و کاهش همزمان در هزینه‌های محاسباتی در طول یک دهه‌ی گذشته، یادگیری یا داده کاوی با به کارگیری تکنیک‌های پردازشی موازی به عنوان روشی امکان پذیر برای غلبه بر مسئله‌ی یادگیری کند شناخته شده است. بنابراین، در این مقاله الگوریتم داده‌ کاوی موازی فازی – ژنتیکی را بر اساس معماری ارباب – برده ارائه کرده‌ایم تا قواعد وابستگی و توابع عضویت را از تراکنش‌های کمی استخراج کنیم. پردازنده‌ی master مانند الگوریتم ژنتیک از جمعیت یگانه‌ای استفاده می‌کند، و وظایف ارزیابی برازش را بین پردازنده‌های slave توزیع می‌کند. اجرای الگوریتم پیشنهاد شده در معماری ارباب – برده بسیار طبیعی و کارآمد است. پیچیدگی‌های زمانی برای الگوریتم‌های داده کاوی ژنتیکی – فازی موازی نیز مورد تحلیل قرار گرفته است. نتایج این تحلیل تأثیر قابل توجه الگوریتم پیشنهاد شده را نشان داده است. هنگامی که تعداد نسل‌ها زیاد باشد، افزایش سرعت الگوریتم ممکن است نسبتاً خطی باشد. نتایج تجربی تیز این نکته را تأیید می‌کنند. لذا به کارگیری معماری ارباب – برده برای افزایش سرعت الگوریتم داده‌ کاوی ژنتیکی – فازی روشی امکان پذیر برای غلبه بر مشکل ارزیابی برازش کم سرعت الگوریتم‌ اصلی است.
کلمات کلیدی: داده کاوی، مجموعه های فازی، الگوریتم ژنتیک، پردازش موازی، قاعده اتحادیه
١- مقدمه
با پیشرفت روزافزون فن آوری اطلاعات (IT)، قابلیت ذخیره سازی و مدیریت داده‌ها در پایگاه‌های داده‌ اهمیت بیشتری پیدا می‌کند. به رغم اینکه گسترش IT پردازش داده‌ها را تسهیل و تقاضا برای رسانه‌های ذخیره سازی را برآورده می‌سازد، استخراج اطلاعات تلویحی قابل دسترسی به منظور کمک به تصمیم گیری مسئله‌ای جدید و چالش برانگیز است. از این رو، تلاش‌های زیادی معوف به طراحی مکانیسم‌های کارآمد برای کاوش اطلاعات و دانش از پایگاه داده‌های بزرگ شده است. در نتیجه، داده کاوی، که نخستین بار توسط آگراول، ایمیلنسکی و سوامی (١٩٩٣) ارائه شد، به زمینه‌ی مطالعاتی مهمی در مباحث پایگاه داده‌ای و هوش مصنوعی مبدل شده است.


  • بخشی از مقاله انگلیسی:

 

abstract

Data mining is most commonly used in attempts to induce association rules from transaction data. In the past, we used the fuzzy and GA concepts to discover both useful fuzzy association rules and suitable membership functions from quantitative values. The evaluation for fitness values was, however, quite time-consuming. Due to dramatic increases in available computing power and concomitant decreases in computing costs over the last decade, learning or mining by applying parallel processing techniques has become a feasible way to overcome the slow-learning problem. In this paper, we thus propose a parallel genetic-fuzzy mining algorithm based on the master–slave architecture to extract both association rules and membership functions from quantitative transactions. The master processor uses a single population as a simple genetic algorithm does, and distributes the tasks of fitness evaluation to slave processors. The evolutionary processes, such as crossover, mutation and production are performed by the master processor. It is very natural and efficient to run the proposed algorithm on the master–slave architecture. The time complexities for both sequential and parallel genetic-fuzzy mining algorithms have also been analyzed, with results showing the good effect of the proposed one. When the number of generations is large, the speed-up can be nearly linear. The experimental results also show this point. Applying the master–slave parallel architecture to speed up the genetic-fuzzy data mining algorithm is thus a feasible way to overcome the low-speed fitness evaluation problem of the original algorithm


 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی

 

عنوان فارسی مقاله:

رویکرد موازی موثر برای دیتا ماینینگ ژنتیکی فازی

عنوان انگلیسی مقاله:

An effective parallel approach for genetic-fuzzy data mining

  • برای دانلود رایگان مقاله انگلیسی با فرمت pdf بر روی عنوان انگلیسی مقاله کلیک نمایید.
  • برای خرید و دانلود ترجمه فارسی آماده با فرمت ورد، روی عنوان فارسی مقاله کلیک کنید.

 

دانلود رایگان مقاله انگلیسی

 

خرید ترجمه فارسی مقاله

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا