دانلود رایگان ترجمه مقاله مدل هیبرید آنلاین جهت پیشگیری و تشخیص آنلاین تقلب – اسپرینگر ۲۰۱۴
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
مدل ترکیبی آنلاین برای پیشگیری و کشف جعل آنلاین |
عنوان انگلیسی مقاله: |
Online Hybrid Model for Online Fraud Prevention and Detection |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | ۲۰۱۴ |
تعداد صفحات مقاله انگلیسی | ۱۱ صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | مهندسی فناوری اطلاعات و مدیریت |
گرایش های مرتبط با این مقاله | تجارت الکترونیک و اینترنت و شبکه های گسترده و مدیریت کسب و کار |
چاپ شده در مجله (ژورنال) | محاسبات هوشمند، شبکه و اطلاعات – Intelligent Computing, Networking, and Informatics |
کلمات کلیدی | جعل مزایده، جعل کارت اعتباری، جعل هویت. HMM |
ارائه شده از دانشگاه | گروه علوم و مهندسی کامپیوتر، دانشگاه جیپه فناوری اطلاعات، هند |
رفرنس | دارد ✓ |
کد محصول | F993 |
نشریه | اسپرینگر – Springer |
مشخصات و وضعیت ترجمه فارسی این مقاله (Word) | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | ۱۴ صفحه با فونت ۱۴ B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
منابع داخل متن | به صورت عدد درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
فهرست مطالب |
چکیده
۱٫ مقدمه
۲٫ کار مرتبط و فرمولاسیون مسئله
۱٫۲٫ کار مرتبط
۲٫۲٫ فرمولاسیون مسئله
۳٫ مدل ترکیبی موجود
۱٫۳٫ روش اهم
۲٫۳٫ الگوریتم برای احراز هویت کاربر
۳٫۳٫ الگوریتم برای وب سرور احراز هویت
۴٫ ارزیابی اهم
۵٫ نتیجه گیری و کارهای آینده
|
بخشی از ترجمه |
چکیده : ۱٫ مقدمه |
بخشی از مقاله انگلیسی |
Abstract The current trend of online business enables better and faster service for users and makes it more profitable for merchants. On the other side, the Internet has become the most popular platform for fraudsters to commit online fraud with ease. Several solutions have been proposed in the literature to overcome these online frauds. But, complete and efficient way out from this problem is still in research. In this paper, we have proposed online hybrid model (OHM) which extensively prevents the possibilities of online fraud, and further, if any possibility is present, then it detects and fixes this possibility. The OHM approach is proposed exclusively for in-auction, non-delivery/merchandise and identity theft frauds. OHM further is applicable to several other online frauds. We have evaluated the performance of this model and have shown that OHM is a robust and highly effective online fraud prevention and detection approach. ۱ Introduction Online business is the modern business methodology which uses direct marketing, selling, and services. The growth of Internet has a special significance in the growth of e-commerce [1]. According to a report by US Commerce Department, Forrester Research, Internet Retailer, ComScore. Inc. [2], the online sell is increased rapidly from past few years and it shows why e-commerce is becoming popular. Increasing growth of online business and consumers over Internet (shown in Tables 1 and 2) [2] have also increased illegal activities simultaneously. Fraudulent behavior over Internet is in general not easy to trace and prosecute. Fraudsters can easily hide their information from large pool of victims without incurring significant cost. One of the key reasons for Internet fraud is the unawareness of the user regarding fraudster’s attacking mechanism through Internet medium. Because of the lack of legislation and consequently the information drive in many countries like in Asia, many Asians are victimized by fraudsters [3]. According to National White Collar Crime Center, Internet fraud can be classified as follows [4]: auction fraud, non-delivery/merchandise fraud, business opportunity schemes fraud, identity theft, credit card fraud, online investment scheme fraud, overpayment, money transfer fraud, spam/spin fraud, charity fraud, automotive, and counterfeit card fraud. Among these frauds, three most frequent frauds are as follows: online auction fraud, non-delivery/merchandise fraud, and identity theft. Online auction fraud is one of the most common types of Internet fraud (see Sect. 2). The process of online auction fraud can be seen as follows: First, online users visit auction Web sites to buy and sell various items. Then, interested buyers can bid for the auction item. Upon winning, the buyer pays for the auction item. The fraud occurs when the victim does not receive the item or receives an item of lesser value than advertised [5]. Second is non-delivery payment/merchandise, which is also one of most fraud areas created by fraudster Internet marketing and retail Web sites, which provide variety of products and services. The victim is misled, by a legitimate-looking site and effective marketing. Then victims give their credit card information or send payment by some other means for goods and services provided by fake sites. The goods never arrive, or if they arrive, then the product’s worth will be less than their real price [4]. Third is identity theft; when a person pretended to become another person by using the information like credit card detail of that person to commit fraud [4]. In this paper, we have proposed a model to prevent and detect online in-auction fraud and non-delivery payment/merchandise due to their high probability among the Internet fraud. Our model is the online hybrid model (OHM) that works in two stages. One is it prevents both the users and Web servers from fraud; secondly, if fraud occurs in the system, then it detects the fraud and informs to victim. OHM is able to prevent and detect frauds like auction fraud, Internet marketing and retail fraud, card theft fraud, and identity theft fraud. This paper is classified into five sections. Section 1 introduces the classification of Internet frauds and describes its categories: online auction fraud, non-delivery/ merchandise fraud, and identity theft fraud. Section 2 shows the literature review for preventing these frauds and formulates the problem regarding these frauds. Further in Sect. 3, we describe the OHM approach for the prevention and detection of frauds and propose OHM prevention algorithms. Thereafter, in Sect. 4, we have evaluated the performance of proposed OHM approach to show the advantages of our model. Section 5 is conclusion and future work continued with references. |