دانلود رایگان ترجمه مقاله یک تحقیق تجربی بر روی مقاومت انتقال برشی بتن خودمتراکم – الزویر 2016
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
بررسی آزمایشی مقاومت انتقال برشی بتون خود متراکم با مقاومت بالا و طبیعی |
عنوان انگلیسی مقاله: |
An experimental investigation of shear-transfer strength of normal and high strength self compacting concrete |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 2016 |
تعداد صفحات مقاله انگلیسی | 10 صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | مهندسی عمران |
گرایش های مرتبط با این مقاله | سازه و مدیریت ساخت |
چاپ شده در مجله (ژورنال) | سازه های مهندسی – Engineering Structures |
کلمات کلیدی | قفل شدگی سنگدانه، کد ها، کنش دول، بتون خود متراکم شونده، برشی، دفورماسیون، مقاومت |
ارائه شده از دانشگاه | گروه مهندسی عمران، دانشگاه کویت |
رفرنس | دارد ✓ |
کد محصول | F966 |
نشریه | الزویر – Elsevier |
مشخصات و وضعیت ترجمه فارسی این مقاله (Word) | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 23 صفحه با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه شده است ☓ |
ترجمه متون داخل جداول | ترجمه شده است ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
درج فرمولها و محاسبات در فایل ترجمه | به صورت عکس درج شده است ✓ |
منابع داخل متن | به صورت عدد درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
فهرست مطالب |
چکیده
1. مقدمه
2. برنامه تجربی
1.2. نمونه پوش آف
2.2. مواد بتن و مخلوط
3.2. فاستر صاف فولاد
4.2. ریخته گری و تست
3. نتایج تجربی
1.3. رفتار کلی نمونه پوش آف
2.3. تنش ترک خوردگی
3.3. تنش عملکرد
4.3. مقاومت نهایی و باقیمانده
4. مقایسه با نتایج تحلیلی
1.4. مدل برشی اصطکاک ACI
2.4. مدل برشی اصطکاک AASHTO اصلاح شده
3.4. مدل Mattock دو سر
4.4. مدل SMCS
5.4. یورو کد 2
6.4. مشاهده در مقابل نقاط قوت نهایی محاسبه
5. محاسبات مقاومت باقی مانده
6. نتیجه گیری
|
بخشی از ترجمه |
1. مقدمه |
بخشی از مقاله انگلیسی |
1. Introduction Shear-transfer models which are based on the shear-friction theory (e.g. [1–3]) are semi-empirical models that have been calibrated using experimental data obtained mainly from pushoff specimens (e.g. [4–7]). They can be used to design the transfer of shear across a cold joint or across an existing crack. The transfer can also be across a critical plane not previously cracked, such as the bearing region of a simple girder or the interface between a corbel and the supporting column. See Fig. 1. Experimental data used in the calibration of these semiempirical models is available from three main types of pushoff specimens which differ mainly by the conditions at the shear transfer plane: (1) specimens that were precracked, (2) specimens that were not precracked, and (3) specimens that were cast at two different times (with a cold joint). Fig. 2 plots a summary of a survey of the number of available test results from conventional pushoff specimens (with conventional reinforcing bars, and with no applied flexure or axial stresses perpendicular along shear plane) [4–19]. The plot gives separate counts for specimens with normal strength concrete (NSC) (with compressive strength less than 50 MPa) and for relatively higher strength concrete (with strength larger than 50 MPa). The figure shows that there is a limited amount of data from high strength concrete (HSC) uncracked specimens. Recent studies also showed that existing analytical models focus largely on the cases of precracked interfaces and cold joints [20,21]. This research aimed at providing more data on non-precracked HSC specimens. On the other hand, it has been observed by Mattock et al. [14] that after reaching the ultimate shear strength, non-precracked pushoff specimens resisted a residual strength which was similar to the strength of the precracked specimens. The tests by Kahn and Mitchell [4] and the Finite Element analysis by Xu et al. [22] confirmed this observation. In spite of its practical importance, this residual strength has not been typically reported separately from the ultimate strength. This research aimed at adding to the limited available tests results which differentiate between the ultimate and the residual strengths. The stresses at which shear cracks first develop are of importance. For example, these values can be used to establish a benchmark for the selection of the minimum amount of clamping reinforcement. The cracking shearing stresses are not typically reported in pushoff tests. This research aimed at providing information on the cracking shearing stresses. Hence, this paper reports the results of an experimental program which aimed at gaining a better understanding of the behavior of non-precracked HSC pushoff specimens. Since the use of self-compacting concrete (SCC) is on the rise around the globe, the concrete used was made with SCC properties. The results from 15 specimens are reported. Twelve of the specimens were SCC (six NSC and six HSC specimens), and three specimens were normal strength conventional concrete. The three conventional concrete specimens are control specimens. The experimental behavior and strengths are given, including a detailed account of the cracking, yield, ultimate and residual stresses. In addition to reporting the experimental results, this paper also compares between the observed ultimate strengths and the calculations of the shear-transfer models of the ACI code [1], the AASHTO LRFD Specifications [2], the Mattock’s tri-linear empirical model [3], and the simplified model for combined stress-resultants (SMCS) model [23]. This paper also investigates the possibility of using the EC2 [24], ACI and AASHTO code equations and Mattock’s model to calculate the residual strength. |