دانلود رایگان مقاله انگلیسی فعالیت عضلات مرکزی در طی تمرینات آویز TRX با و بدون نوارهای درمانی کششی در بزرگسالان با کمر درد مزمن: پیامد و اهمیت برای توانبخشی به همراه ترجمه فارسی
عنوان فارسی مقاله | فعالیت عضلات مرکزی در طی تمرینات آویز TRX با و بدون نوارهای درمانی کششی در بزرگسالان با کمر درد مزمن: پیامد و اهمیت برای توانبخشی |
عنوان انگلیسی مقاله | Core Muscle Activity during TRX Suspension Exercises with and without Kinesiology Taping in Adults with Chronic Low Back Pain: Implications for Rehabilitation |
رشته های مرتبط | تربیت بدنی، آسیب شناسی و حرکات اصلاحی، یادگیری و کنترل حرکتی، فیزیولوژی ورزشی |
فرمت مقالات رایگان |
مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
توضیحات | ترجمه این مقاله به صورت خلاصه انجام شده است. |
نشریه | هینداوی – Hindawi |
مجله | پزشکی تکمیلی و جایگزین مبتنی بر شواهد – Evidence-Based Complementary and Alternative Medicine |
سال انتشار | 2015 |
کد محصول | F871 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات تربیت بدنی |
فهرست مقاله: 1- مقدمه |
بخشی از ترجمه فارسی مقاله: 1- مقدمه |
بخشی از مقاله انگلیسی: 1. Introduction Chronic low back pain (LBP) is a common cause of work disability and as such is associated with elevated health care costs [1]. More than 80% of people experience an acute episode of LBP sometime during their lives [2], of which 5% develop chronicity [3]. Core stability training is by far one of the most commonly used rehabilitation strategies for improving lumbopelvic-hip control and the dynamic stability of the lumbar spine in people with chronic LBP [4]. Traditional core stability exercises on a stable surface were found to be less effective in inducing high core muscle activity when compared with core stability exercises performed with an instability device such as the TRX suspension straps [5]. Although the core muscle activity was higher when exercising with the labile suspension straps, the spine compressive load was not high [6, 7]. Therefore, TRX suspension training might be particularly suitable for rehabilitating patients with chronic LBP. However, among the large variety of TRX suspension workouts [8], which postures are most suitable for individuals with chronic LBP has yet to be determined. There is only one study that has compared the core muscle activity during four different TRX workouts (hamstring curl, hip abduction in plank, chest press, and 45-degree row) in a group of young, healthy individuals (without LBP). The research team found that hip abduction in plank induced the greatest abdominal muscle activity, whereas the hamstring curl induced the greatest paraspinal muscle activity as measured by the surface electromyography (EMG) [9]. In this study, we examined the core muscle activity during the four aforementioned TRX workouts exclusively in individuals with chronic LBP using surface EMG as it can assess muscle activity directly [9]. We hypothesized that different TRX suspension workouts activate the core muscles differentially in people with chronic LBP. Kinesiology taping (KT) is a relatively new method that has been used in the clinical management of LBP. The tape, which is elastic, porous, and adhesive, can be applied easily to the low back region and does not restrict joint mobility during exercises [10]. Although the effects of KT in clinical studies are controversial [11–14], some beneficial effects of KT have been reported, such as the normalization of muscular function, the correction of possible joint misalignment [11, 12], and enhanced neuromuscular performance [13]. Hence, we postulated that KT might be an ideal adjunct to TRX training to activate the core muscles in people with chronic LBP. To date, no study has examined the acute effects of KT on core muscle activity during the performance of various TRX suspension workouts in individuals with long-term LBP. The aim of this study was to determine the influence of KT and different TRX suspension workouts, and their interactions, on the amplitude of EMG activity in the core muscles among people with chronic LBP. 2. Materials and Methods This was an experimental study during which each participant underwent four TRX suspension workouts/positions (hamstring curl in supine lying with hips lifted, hip abduction in prone plank, chest press, and 45-degree row in standing inclined) and two taping conditions (with and without KT applied to the low back). In each TRX position and taping condition combination, the core muscles’ activity was measured using surface EMG.The sequence of TRX workouts was randomized to avoid order effect. The participants were recruited from the university via convenience sampling. The inclusion criteria were to have chronic LBP, defined as a persisting or periodic pain in the low back region with a duration of six months or longer [15], be between 18 and 30 years old, and have no previous experience in TRX suspension training. The exclusion criteria were to have neurological deficits, spinal structural deformities, genetic spinal disorders, previous spinal surgery, recent spinal or peripheral injuries (e.g., ligament sprains), allergy to KT, or regular consumption of analgesics, or receive active physiotherapy treatments. The study was approved by the Human Research Ethics Committee of the administering university. All of the participants who volunteered to participate in the study were first screened by a physiotherapist and a trained assistant to ensure that the above criteria were met. In addition, all of the experimental procedures and assessment methods were fully explained to each participant before written informed consent was obtained. All of the procedures were performed in accordance with the Declaration of Helsinki. Demographic information was obtained by interviewing the participants. Body height and weight were measured. Moreover, the participants were asked to quantify their LBP intensity (no pain = 0; worst pain = 10) by using the visual analog scale (VAS) [16]. The self-administered 24- item Roland-Morris Disability Questionnaire (RDQ) was also used to assess physical disability due to LBP (0 = no disability; 24 = maximum disability) [17]. The suspension device, TRX Home Suspension Training Kit (Fitness Anywhere LLC, San Francisco, USA), comprised an adjustable nylon cable with handle straps and foot cradles at both ends that was anchored to the door via a door anchor. The standardized procedures for using the TRX suspension device to perform the four TRX suspension workouts are well described in the TRX user’s guide [8]. These four positions were selected for the high activation of core muscles reported in the literature [5, 9]. Body positioning and any adverse effects (e.g., increased in LBP) during the suspension workouts were closely monitored by the research personnel. Bipolar surface EMG electrodes (EMG sensor SX230- 1000, Biometrics, Newport, UK) were used to detect muscle activity among the four major core muscles—transversus abdominis/internal oblique (TrAIO), rectus abdominis (RA), external oblique (EO), and superficial lumbar multifidus (LMF)—on the right side of the body during the TRX suspension exercises. Active electrode placements on the skin were identified following the recommendations of Marshall and Murphy [18] and Barbero et al. [19] and prepared by shaving and cleansing using alcohol swabs to reduce skin impedance. In brief, the positions of the active electrodes were summarized as follows: TrAIO—2 cm inferior and medial to the anterior superior iliac spine; RA—3 cm superior to the umbilicus and 2 cm lateral to the midline; EO— just above the TrAIO electrode site, in direct line with the umbilicus [18]; and LMF—lateral to the midline at the levels of L2 to L4 [19]. The orientation of the active electrodes was parallel to the muscle fibers for optimal signal recording [9]. The reference electrode (R506, Biometrics, Newport, UK) was placed on the ipsilateral tibial tuberosity. Adhesive tapes were applied to ensure all the EMG electrodes were in firm contact with the skin. The interelectrode distance of the EMG active electrodes was fixed at 1 cm.The EMG signal was sampled at 1000 Hz and amplified by a gain factor of 1000. Other parameters included an input impedance of >1015 Ω, common mode rejection ratio of >96 dB, noise of <5 ?V, and bandwidth of 20–460 Hz [20]. All of the EMG electrodes and cables were connected to the DataLOG (Biometrics, Newport, UK), which was securely attached to the participant’s waist during the TRX workouts to minimize artifacts. The DataLOG used both a highpass filter (20 Hz) to remove DC offsets due to membrane potential and a low-pass filter for frequencies above 450 Hz. It also stored EMG data for offline analysis [20]. The EMG signals of each core muscle were postprocessed using the Biometrics EMG analysis software for DataLOG version 8.51 (Newport, UK). The root-mean-square value of the EMG signals (EMGrms) obtained from each core muscle was calculated. Before the TRX suspension workouts, EMG data were collected using two five-second maximal voluntary isometric contraction (MVIC) trials against manual resistance for each of the four core muscles with a one-minute, between-trial rest period. Details for applying the manual resistance have been described in Mok et al. [9] and Escamilla et al. [21]. The average EMGrms value during the middle three-second window of each trial was chosen as the representative MVIC value. The MVIC value of each core muscle was recorded for later data normalization [9]. During the TRX-EMG measurement, the participants were required to maintain each of the four TRX positions for five seconds while the EMG activity of the core muscles was being recorded. The RMS of the EMG activity of each core muscle was computed during a middle three-second period during which the participant held his or her position. Two trials were performed for each of the four testing conditions with a one-minute break between trials. The average EMGrms value of two repetitions of each TRX suspension position was normalized against the RMS value of the MVIC of each core muscle, and thus the outcome was expressed as a percentage of MVIC (%MVIC). %MVIC was selected as the major outcome measure because the test-retest reliability was good (ICC = 0.64) [9]. Upon completion of the four TRX suspension workouts and simultaneous EMG recordings, elastic kinesiology taping (k tape, biviax GmbH & Co. KG, Dortmund, Germany) was applied to the low back region. The EMG electrodes were in firm contact with the skin all the time as the KT tapes were applied on top of the adhesive tapes. Each participant received a standardized kinesiology taping application with four I-strips being placed at about 25% tension overlapping in a star shape over the point of maximum pain in the lumbar region [10]. After fixing the tape, all of the above TRX-EMG measurement procedures were repeated. The %MVIC values of the four core muscles (with taping applied) were calculated and used for analysis. Our statistical analysis was performed using IBM SPSS 20.0 software (IBM, Armonk, NY). The significance level was set at 0.05. A two-way repeated-measures ANOVA (withinsubject factors: TRX position and taping condition) was used to compare the normalized EMGrms data (%MVIC) across the different conditions. The Greenhouse-Geisser epsilon adjustment was used if the sphericity assumption was violated. A post hoc paired ?-test with Bonferroni adjustment was performed if any overall significant results were obtained for the normalized EMGrms data. The effect size (partial etasquared, denoted as partial ?2 ) was also reported—values of 0.14, 0.06, and 0.01 represented large, medium, and small effect sizes, respectively [22]. |