دانلود رایگان مقاله انگلیسی سلول های خورشیدی کارامد پروسکایت (با پیوند ناهمگون و شکل مسطح) با رسوب بخار به همراه ترجمه فارسی
عنوان فارسی مقاله | سلول های خورشیدی کارامد پروسکایت (با پیوند ناهمگون و شکل مسطح) با رسوب بخار |
عنوان انگلیسی مقاله | Efficient planar heterojunction perovskite solar cells by vapour deposition |
رشته های مرتبط | مهندسی انرژی، مکانیک، تبدیل انرژی، فناوری انرژی و انرژی های تجدیدپذیر |
فرمت مقالات رایگان |
مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
نشریه | Nature |
سال انتشار | 2013 |
کد محصول | F772 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات |
فهرست مقاله: خلاصه روش ها |
بخشی از ترجمه فارسی مقاله: درون یک سلول خورشیدی، بسیاری از اجزای متفاوت با کارکرد ها و نقش های مختلف برای خواص الکترونیک نوری و خلوص وجود دارند. مفهوم سلول خورشیدی هیبریدی آلی-معدنی ” یک مفهوم چند منظوره است” به طوری که هدف آن استفاده از مواد بهینه برای عملکرد بهتر تک تک اجزاء می باشد. هر ماده ای که به آسانی قابل فراوری، ارزان و فراوان باشدرامی توان با هدف تولید یک سلول خورشید با کارایی بالا استفاده کرد.سلول های خورشیدی هیبریدی در ترکیبات پلیمری مزدوج حاوی نانو کریستال های نیمه هادی نظیر CdSe (12), |
بخشی از مقاله انگلیسی: Within a solar cell there are many different components with discrete roles and having different tolerances for purity and optoelectronic properties. The hybrid inorganic–organic solar cell concept is ‘material agnostic’ in that it aims to use the optimum material for each individual function. Any material that is easy to process, inexpensive and abundant can be used, with the aim of delivering a high-efficiency solar cell. Hybrid solar cells have been demonstrated in p-conjugated polymer blends containing semiconductor nanocrystals such as CdSe (ref. 12), CuInS2 (ref. 13) and PbS (ref. 14). Dye-sensitized solar cells are hybrid solar cells containing a mesostructured inorganic n-type oxide (such as TiO2) sensitized with an organic or metal complex dye, and infiltrated with an organic p-type hole-conductor4 . Recently, organometal trihalide perovskite absorbers with the general formula (RNH3)BX3 (where R is CnH2n 1 1, X is the halogen I, Br or Cl, and B is Pb or Sn)15, have been used instead of the dye in dye-sensitized solar cells to deliver solid-state solar cells with a power conversion efficiency of over 10% (refs 8, 11, 16). Evolving from the dye-sensitized solar cells, we found that replacing the mesoporous TiO2 with mesoporous Al2O3 resulted in a significant improvement in efficiency, delivering an open-circuit voltage of over 1.1 V in a device which we term a ‘meso-superstructured solar cell’8 . We reason that this observed enhancement in open-circuit voltage is due to confinement of the photo-excited electrons within the perovskite phase, thereby increasing the splitting of the quasi-Fermi levels for electrons and holes under illumination, which is ultimately responsible for generating the open-circuit voltage. Further removal of the thermal sintering of the mesoporous Al2O3 layer, and better optimization of processing, has led to meso-superstructured solar cells with more than 12% efficiency17. In addition, CH3NH3PbI3 2 xClx can operate relatively efficiently as a thin-film absorber in a solution-processed planar heterojunction solar cell configuration, delivering around 5% efficiency when no mesostructure is involved17. This previous work demonstrates that the perovskite absorber is capable of operating in a much simpler planar architecture, but raises the question of whether mesostructure is essential for the highest efficiencies, or whether the thin-film planar heterojunction will lead to a superior technology. Here, as a means of creating uniform flat films of the mixed halide perovskite CH3NH3PbI3 2 xClx, we use dual-source vapour deposition. In Fig. 1 we show an illustration of the vapour-deposition set-up, along with an illustration of a planar heterojunction p–i–n solar cell (see Fig. 1c). From the bottom (the side from which the light is incident), the device is constructed on fluorine-doped tin oxide (FTO)-coated glass, coated with a compact layer of n-type TiO2 that acts as the electronselective contact. The perovskite layer is then deposited on the n-type compact layer,followed by the p-type hole conductor, 2,29,7,79-tetrakis- (N,N-di-p-methoxyphenylamine)9,99-spirobifluorene (spiro-OMeTAD), which ensures the selective collection of holes at the silver cathode. Given that the purpose of this study was to understand and optimize the properties of the vapour-deposited perovskite absorber layer, the compact TiO2 and the spiro-OMeTAD hole transporter were solutionprocessed, as is usual in meso-superstructured solar cells17. In Fig. 1b, we compare the X-ray diffraction pattern of films of CH3NH3PbI3 2 xClx either vapour-deposited or solution-cast onto compact TiO2-coated FTO-coated glass. The main diffraction peaks, assigned to the 110, 220 and 330 peaks at 14.12u, 28.44u and, respectively, 43.23u, are in identical positions for both solution-processed and vapour-deposited films, indicating that both techniques have produced the same mixed-halide perovskite with an orthorhombic crystal structure8 . Notably, looking closely in the region of the (110) diffraction peak at 14.12u, there is only a small signature of a peak at 12.65u (the (001) diffraction peak for PbI2) and no measurable peak at 15.68u (the (110) diffraction peak for CH3NH3PbCl3), indicating a high level of phase purity. A diagram of the crystal structure is shown in Fig. 1d. The main difference between CH3NH3PbI3 and the mixed-halide perovskite presented here is evident in a slight contraction of the c axis. This is consistent with the Cl atoms in the mixed-halide perovskite residing in the apical positions, out of the PbI4 plane, as opposed to in the equatorial octahedral sites, as has been theoretically predicted18. We now make a comparison between the thin-film topology and crosssectional structure of devices fabricated by either vapour deposition or solution processing. The top-view scanning electron microscope (SEM) images in Fig. 2a, b highlight the considerable differences between the film morphologies produced by the two deposition processes. The vapour-deposited films are extremely uniform, with what appear to be crystalline features on the length scale of hundreds of nanometres. In contrast, the solution-processed films appear to coat the substrate only partially, with crystalline ‘platelets’ on the length scale of tens of micrometres. The voids between the crystals in the solution-processed films appear to extend directly to the compact TiO2-coated FTOcoated glass. |