دانلود رایگان ترجمه مقاله سیستم مدیریت طول عمر پل بر اساس مدل سیار – وایلی 2006
دانلود رایگان مقاله انگلیسی سیستم مدیریت چرخه عمر پل مبتنی بر مدل سیار به همراه ترجمه فارسی
عنوان فارسی مقاله | سیستم مدیریت چرخه عمر پل مبتنی بر مدل سیار |
عنوان انگلیسی مقاله | Mobile Model-Based Bridge Lifecycle Management System |
رشته های مرتبط | مهندسی عمران، سازه و مدیریت ساخت |
فرمت مقالات رایگان |
مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
نشریه | وایلی – Wiley |
مجله | مهندسی عمران و زیرساخت های کامپیوتری – Computer-Aided Civil and Infrastructure Engineering |
سال انتشار | 2006 |
کد محصول | F581 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات مهندسی عمران |
فهرست مقاله: چکیده 1.مقدمه 2.مروری بر BMS 3.نیازمندی ها و ملزومات سیستم مدیریت چرخه عمر پل مبتنی بر مدل سیار(MMBL,MS) 4.چارچوبی برای سیستم مدیریت چرخه عمر پل مبتنی بر مدل سیار(MMBL,MS) 4-1 ساختار کلی چارچوب 4-2 ابعاد رایانشی و محاسباتی چارچوب 5- توسعه سیستم نمونه و مطالعه موردی 5-1 مطالعه موردی 5-4 جزییات پیاده سازی عمومی 5-3 طراحی دیتابیس 5-4 اجزای مسیریابی و GIS 5-5 طراحی رابط کاربری 6- ارزیابی و صحت سنجی 7-نتیجه گیری و کار های اینده |
بخشی از ترجمه فارسی مقاله: 1- مقدمه
2- مروری بر BMS |
بخشی از مقاله انگلیسی: 1 INTRODUCTION Bridge lifecycle management aims to perform the management functionalities related to bridges from the conceptual stage to the end of their useful life, through the design, construction, operation, and maintenance stages. This article investigates the possibility of extending the functionalities of present bridge management systems (BMSs) in two directions: (1) linking all the information about the lifecycle stages of a bridge (e.g., design, construction, inspection, and maintenance) to a 4D model of the bridge incorporating different scales of space and time to record events throughout the lifecycle; and (2) providing user interfaces that facilitate using the 4D models on mobile computers, such as PDAs and tablet PCs equipped with tracking devices, such as Global Positioning System (GPS) receivers. The proposed new system is called mobile model-based bridge lifecycle management system (MMBLMS). The article starts by reviewing conventional bridge management systems (BMSs) and recent trends in 4D models, mobile computing and Location-Based Computing (LBC). This is followed by an analysis of the requirements of the proposed MMBLMS. Special consideration is given to the spatial and temporal issues, such as the requirements to support navigation, picking behavior, and different Levels of Details (LoDs), and to adopting available standards for interoperability. A framework of MMBLMS is described and the basic computational issues for realizing it are discussed. Then, a prototype system developed in Java language is discussed in detail to demonstrate the feasibility of the proposed methodology. A case study of Jacques Cartier Bridge in Montreal is also demonstrated. 2 REVIEW OF BMSS The major tasks in bridge management are: (1) collection of inventory data, (2) inspection, (3) assessment of condition and strength, (4) decisions about repair, strengthening or replacement, and (5) prioritizing the allocation of funds. BMSs are means of managing information of bridges to support decision-making that assures their long-term health and to formulate maintenance programs in line with budgetary constraints and funding limitations. BMSs include four basic components: data storage, cost and deterioration models, optimization and analysis models, and updating functions (Czepiel, 2004; Ryall, 2001). The core part of a BMS is a database that is built up of information obtained from the regular inspection and maintenance activities. Bridge database management includes the collection, updating, integration, and archiving of the following information: (1) bridge general information (location, name, type, load capacity, etc.), (2) design information and physical properties of the elements, (3) inventory data, (4) regular inspection records, (5) condition and strength assessment reports, (6) repair and maintenance records, and (7) cost records. New approaches in BMSs try to introduce new information technologies to facilitate mobile data collection and manipulation. For example, a system developed by the University of Central Florida for the Florida Department of Transportation (FDOT) (Kuo et al., 1994) consists of both a field and office setup with a pen-based notebook computer used to collect all field inspection data. The Massachusetts Highway Department is using a system called IBIIS to store and manage all of their bridge documents (Leung, 1996). As part of this system, inspectors are equipped with a video camcorder to take videos and pictures, and a notebook computer to enter the rating data for each bridge and commentary. A more recent, Personal Digital Assistant (PDA)- based field data collection system for bridge inspection is inspection on hand (IOH) (Trilon, 2004). IOH helps inspectors capture all rating information, commentary, and sketches using hand-held, pen-based PDAs, and share data with the Pontis bridge management system. In addition, the Digital Hardhat (DHH) is a pen-based computer with a special multimedia reporting system that allows the field worker to save multimedia information, such as text, sound, video and images, into a database. DHH technology enables dispersed inspectors to communicate information and to collaboratively solve problems using shared multimedia data (Stumpf et al., 1998). Based on our literature review and to the best of our knowledge, the proposed approach for MMBLMS presented in this article makes the first attempt to integrate 4D bridge models with BMSs and to make the resulting information accessible to mobile on-site workers. Although 4D models have already been built to support construction planning and scheduling (Zhang et al., 2000), these models are not integrated with Facilities Management (FM) or Infrastructure Management Systems (IMSs). In addition, there is no available system architecture to support the interaction with these models in mobile situations. |