دانلود رایگان مقاله انگلیسی جهش متفاوت در ساختمان گیاه کوشاد گل سفید به همراه ترجمه فارسی
عنوان فارسی مقاله: | جهش متفاوت در ساختمان گیاه کوشاد گل سفید |
عنوان انگلیسی مقاله: | Two different mutations are involved in the formation of white-flowered gentian plants |
رشته های مرتبط: | زیست شناسی، ژنتیک، علوم گیاهی، فیزیولوژی گیاهی |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله خوب میباشد |
نشریه | الزویر (Elsevier) |
مجله | مجله علوم گیاهی (Plant Science) |
کد محصول | F47 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات زیست شناسی |
بخشی از ترجمه فارسی: ژاپنی ها گیاهان gentian را که به طور طبیعی گل های آبی دارند کشت می دهند اما تعدادی گیاه گل سفید از طریق جهش های خود به خودی در میان آن ها پراکنده شد. برای تعیین مبنای مولکولی رنگ پذیری سفید در گل های gentian، ما 2 گیاه گل سفید polano , Homoi را با یک گیاه گل آبی maciry با استفاده از مسیرهای بیوشیمیایی و مولکولی مقایسه کرده ایم. اجرای کروماتوگرافی مایع (HPLC) در جهت تجزیه و تحلیل داده ها نشان می دهد که سطح فلاون در polano سفید تنها حدود نیمی از میزان اندازه گیری شده در 2 گونه ی دیگر بود در حالی که آنتوسیانین در دو گونه گل سفید در مقایسه با maciry که میزان بالایی جمع کرده اند وجود ندارد. تجزیه و تحلیل northern ژن های ساختاری بیوسنتز فلاونوئید قبلا به طور موقتی گزارش شده است که در maciry تنظیم شده است نشان می دهد که Homoi فاقد رونوشت های ژن سنتز آنتوسیانین است در حالی polano سفید برای بیان ANS به اندازه کالکون سنتز (CHS)، فلاوانون 3 هیدروکسیلاز (F3H)، فلاونوئید 3 و 5 هیدروکسیلاز (F,3,5,H)، دی هیدروفلاونول 4 ردوکتاز (DFR)، UDP گلوکز فلاونوئید 3 گلوکوزیل ترانسفراز (3GT) و آنتوسیانین 5- آروماتیک آسیل ترانسفراز (5AT) کاهش یافته است. |
بخشی از مقاله انگلیسی: Abstract Japanese cultivated gentian plants have naturally blue flowers, but some white-flowered cultivars are being bred through the utilization of spontaneous mutants. To determine the molecular basis of white coloration in gentian flowers, we compared two white-flowered cultivars Homoi and Polano White to a blue-flowered cultivar Maciry using biochemical and molecular approaches. High performance liquid chromatography (HPLC) analyses showed that flavone levels in cv. Polano White were only about one-half the amounts measured in the other two cultivars, while anthocyanins were absent in the two white-flowered cultivars compared to cv. Maciry in which high levels accumulated. Northern blot analysis of 10 flavonoid biosynthetic structural genes, previously reported to be temporally regulated in cv. Maciry [1] showed that cv. Homoi lacked transcripts for the anthocyanidin synthase (ANS) gene while cv. Polano White had decreased expressions for ANS as well as for chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), flavonoid 30 ,50 -hydroxylase (F30 ,50 H), dihydroflavonol 4-reductase (DFR), UDP-glucose:flavonoid 3-glucosyltransferase (3GT) and anthocyanin 5-aromatic acyltransferase (5AT). Southern blot analysis confirmed the deficiency of one of two ANS loci in cv. Homoi. Transient expression of ANS in flower petals also strongly suggested that white flowers of cv. Homoi were derived from ANS mutation. Furthermore, analysis of stress-induced flower pigmentation suggested that rather than mutations in multiple structural genes being the cause, a defect in one or more regulatory factors controlling the later steps of flavonoid biosynthesis is responsible for white coloration in cv. Polano White. # 2005 Elsevier Ireland Ltd. All rights reserved. Keywords: Anthocyanidin synthase; Flavonoid; Gene expression; Gentian; Mutation; White flower 1. Introduction One of the important objectives when breeding ornamental flowers is to obtain a wide variety of flower colors. Flower coloration is the result of an accumulation of secondary metabolites, such as flavonoid, carotenoid and betalain compounds. Of these, flavonoid pigments, which are widespread in higher plants, have been studied extensively [2–4]. Flavonoids are a diverse group of phenolic compounds consisting of two aromatic rings joined by a C3 unit. In addition to their role in flower pigmentation, they are also known to be involved in attraction of pollinators, plant– microorganism interactions, protection from harmful UV irradiation, pollen tube growth and tissue pigmentation [3,4]. The biochemistry, genetics and molecular biology of flavonoids, especially with regard to anthocyanin pigmentation, have been elucidated in maize (Zea mays) kernels, flowers of petunia (Petunia hybrida) and snapdragon (Antirrhinum majus), and the seeds and leaves of Arabidopsis thaliana [2–5]. Mutations that alter flower color have long been selected and used by horticulturalists in breeding new varieties. www.elsevier.com/locate/plantsci Plant Science 169 (2005) 949–958 Abbreviations: CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F30 H, flavonoid 30 -hydroxylase; F30 ,50 H, flavonoid 30 ,50 -hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; 3GT, UDP-glucose:flavonoid 3-glucosyltransferase; 5AT, anthocyanin 5-aromatic acyltransferase; FSII, flavone synthase II; HPLC, high performance liquid chromatography; RT-PCR, reverse transcription-polymerase chain reaction § The nucleotide sequence reported in this paper has been submitted to DDBJ, EMBL and GenBank under accession number AB208689 (GtANS). * Corresponding author. Tel.: +81 197 68 2911; fax: +81 197 68 3881. E-mail address: mnishiha@ibrc.or.jp (M. Nishihara). 1 Current address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Japan. 0168-9452/$ – see front matter # 2005 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.plantsci.2005.06.013 Natural mutants were once selected from wild genetic resources, but nowadays, aggressive mutations are commonly introduced through artificial strategies, such as radiation irradiation and chemical mutagens [6]. Flower color mutants have also been used for characterization of structural enzymes (genes) and regulatory factors related to flavonoid biosynthesis and for isolation of transposable elements [5]. Moreover, these findings have been directly used for modification of flower color by genetic transformation technology [7]. |