دانلود رایگان ترجمه مقاله فعاليت عصبی هيپوكامپال فعال در انسان – اسپرینگر

 

دانلود رایگان مقاله انگلیسی فعالیت نورونی هیپوکامپال مداوم در انسان: آیا سرو صداست یا فرایند فرکتال همبسته است؟ به همراه ترجمه فارسی

 

عنوان فارسی مقاله: فعالیت نورونی هیپوکامپال مداوم در انسان: آیا سرو صداست یا فرایند فرکتال همبسته است؟
عنوان انگلیسی مقاله: Ongoing Hippocampal Neuronal Activity in Human: Is it Noise or Correlated Fractal Process?
رشته های مرتبط: زیست شناسی، پزشکی، مغز و اعصاب، علوم سلولی و مولکولی
فرمت مقالات رایگان مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند
کیفیت ترجمه کیفیت ترجمه این مقاله خوب میباشد 
توضیحات ترجمه صفحات 4الی 10 این مقاله موجود نیست
نشریه اسپرینگر – Springer
کد محصول f257

مقاله انگلیسی رایگان

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان 

دانلود رایگان ترجمه مقاله
جستجوی ترجمه مقالات جستجوی ترجمه مقالات پزشکی

 

بخشی از ترجمه فارسی مقاله:

خلاصه: الگوهای پیش زمینه یا در حال انجام در فعالیت های داخل بدن، حتی در غیاب هر گونه محرک خارجی، کاملا نامنظم هستند و هیچ ساختار یا تکراری در توالی شلیک نورونی دیده نمی شود. در نتیجه، الگوی شلیک مداوم یک نورون اغلب به صورت نویزهای تورونی در نظر گرفته می شود که به صورات سنتی به صورت یک فرایند نقطه ای تصادفی مدل شده است، یعنی، روند جدید خالی از هر گونه ارتباطی میان بازه-سنبله درونی متوالی (ISI) است. اما یک دیدگاه جایگزین تازه در حال ظهور است که فعالیت مداوم ممکن است الگویی منسجم زمانی-فضایی نشان دهد، که این یک ویژگی فرایند های فرکتال با ارتباط دوربرد است. در اینجا، ما ماهیت نوسانات نامنظم الگوی شلیک نورونی مداوم نورون های واقع در هیپوکامپ انسان را با استفاده از روش های زیر بررسی کردیم: i) تجزیه و تحلیل نوسانات detrended (DFA)، ii) انتروپی چند مقیاسی
و iii) همگرایی آماری آنالیز لحظه (CMA). فعالیت نورونی در غیاب هر گونه وظیفه شناختی صریحی ثبت شد، در حالیکه افراد بیدار بودند. هردو آنالیز DFA و MSE به وضوح نشان دادند که الگوی شلیک مداوم به خوبی توسط فرایند تجدیدی به خوبی توصیف نشده است، بلکه آنها رابطه های قانون های توانی محدوده گسترده ای را نشان می دهند که نشانگر اثرات حافظه مداوم است که ممکن است از فرایند فرکتال ناشی شود. علاوه بر این، این نورون ها همگرایی کندی را از لحظه های آماری نشان داده اند. چنین رابطه های دوربردی توسط توالی های کنترلی آماری تایید شده است. نورون هایی که روابط دوربرد شان می دهند نیز روابط کم اهمیتی را به لحاظ آماری با دیگر نورون های همسایه نشان می دهند. ما پیشنهاد می کنیم که این نوع از روابط زمانی-فضایی می توانند برای بهینه سازی انتقال اطلاعات و نگه داری در سیناپس های هیپوکامپ به کار روند. حض.ر همبستگی در الگوی مداوم نیز اثر والی پیش تحریک شده را بر شکل گیری پاسخ های پس از محرک را نشان می دهد. علاوه بر این، این یافته ها برای بهینه سازی روش های مدل سازی عصبی به کار می روند.
مقدمه:
فعالیت الکتریکی خود به خودی، فعالیت نورونی که در غیاب محرک‌های خارجی آشکار مشاهده‌شده است، یک ویژگی برجسته از فعالیت الکتریک سیستم عصبی مرکزی است. چنین فعالیت مداوم و یا پیش زمینه‌ای که از سطح میکروسکوپی یافت شده است، در قالب پتانسیل عمل یک نورون تکی ثبت‌شده است و تا سطح ماکروسکوپی در قالب نوسانات قشر جهانی ثبت شده است. ویژگی بنیادی فعالیت خودبه‌خودی نوسانات بسیار نامنظم آن است، یعنی‌ فقدان تکرار. فعالیت خود به خودی معمولاً تنها به‌عنوان “نویز” سیستم عصبی که هیچ اطلاعات معنی‌داری را حمل نمی‌کنند، در نظر گرفته می‌شوند. نتیجه واضحِ این فرض این است که پاسخ پس از تحریک با پاسخ مداوم یا پیشت هریک شده ارتباطی‌ ندارد. درحالی‌که آنالیز داده واحد تکی‌ ( یعنی‌ نورون)، نرخ شلیک میانگین پیشنهاد شده است تا محرک‌های مناسب وابسته به اطلاعات را داشته باشد درحالی‌که وابستگی زمانی‌ بین پتانسیل عملکرد متولی‌ (یعنی‌ اسپایس( خوشه‌ها)) کاملاً ندیده گرفته می‌شود. در این چارچوب، توالی بازه خوشه درونی (ISI) یک نورون تکیه درون بدن از لحاظ نزاری به عنوان درکی از فرایند پواسون نقطه‌ای همگن (HPP) در نظر گرفته می‌شود. یعنی‌ فرایند تجدیدی (RP). HPP بدون حافظه است.
وقوع یک بسپایک در هر زمانt1 مستقل از حضور یا غیاب اسپایک‌ها در زمان‌های دیگر t=/ t1است. ازینرو، هر دو بازه‌های بسپایک و اسپایک‌های شمارشی توالی مستقل، و توزیع یکنواختِ متغیر‌های تصادفی را شکل می‌دهند:رابطهٔ قابل ملاحظه‌ای در زنجیره بسپایک وجود ندارد که توسط فرایند HPP تولید شده باشد. و فرایند فاصلهٔ HPP کاملاً توسط تابع توزیع بازه خوشه میانی که یک اندازه‌گیری استاتیکی است، توصیف شده است.
در مقابل این فرضیات یافته‌های اخیر، نشان می‌دهند که رابطه طولانی مدتی‌ بین ISI‌‌ها وجود دارد. این رابطهٔ دوربرد نشان دهندهٔ یک فرایند نقطه‌ی فراکتال است که از لحاظ امری خود مشابه یا مقیاس مشابه است. برای یک فرایند تجدیدی، بازه مرتبه بالاتر و توزیع‌های شمارشی می‌توانند تنها با دانستن توزیع ISI مرتبه اول محاسبه شوند، اما برای فرایند فراکتال، روابط و اثرت حفظ در توالی ISI نمی‌تواند توسط توزیع مرتبه اول ISI توضیح داده شود. با این حل، ازآنجایی که نشان داده است که سیگنال‌های مشخص ممکن است به عنوان یک رابطه دوربرد بر اساس یک روش به نظر برسد اما نه الزاماً بر اساس روس دیگر تشخیص رابطهٔ دوربرد در توالی ISI با تعداد محدود خوشه‌ها یک کار بی‌ اهمیت است. در مطلع حاضر، ما تغیرات فعالیت خودبه خودی نورون تکی‌ ثبت شده درون بدن هیپوکامپ انسانی‌ را مورد تجزیه و تحلیل قرار دادیم. هدف نهایی ما بررسی فرایند، فرایند تجدیدی یا فرایند فراکتال گونه ، خصوصیت بهتر نوسانات الگو ISI است. روش‌های بهتری به تصویب رسید. ما مشاهده کردیم که اکثریت نورون‌ها رابطه قانون توانی‌ دوربردی را در الگوی شلیک خود نشان می‌دهند و چنین رابطه‌های دوربردی سیگنال‌های قوی‌ای از فرایند‌های فراکتال گونه حکم بر دینامیک نورونی هستند.

بخشی از مقاله انگلیسی:

Summary

The patterns of background or ongoing in vivo activity, even in the absence of any external stimulus, are quite irregular showing no clear structure or repetitiveness in the neuronal firing sequences. Consequently, the ongoing firing pattern of a neuron is mostly considered as a neuronal noise which is traditionally modeled as a stochastic Point process, i.e., renewal process which is devoid of any correlation between successive inter-spike-interval (ISI). But a recently emerging alternative view is that the ongoing activity may possess sptaio-temporally coherent patterns, a feature of fractal process with long-range correlation. Here, we investigated the nature of irregular fluctuations of ongoing neuronal firing pattern of neurons located in human hippocampus by the following methods: (i) detrended fluctuation analysis (DFA) , (ii) multiscale entropy (MSE) analysis, and (iii) convergence of the statistical moment analysis (CMA). Neuronal activity was recorded in the absence of any explicit cognitive task while the subjects were awake. Both the DFA and MSE analysis clearly show that the ongoing firing patterns are not well described by a renewal process, rather they show long-range power-law correlations, representing ongoing memory effects, which possibly arises from a fractal process. Further, these neurons showed slow convergence of statistical moments. Such long-range correlations are also corroborated by statistical control sequences. Neurons which exhibit long-range correlations also exhibit statistically nonsignificant correlations with other neighboring neurons. The presence of long-range correlations is a characteristic of fractal-like dynamics, representing memory or history in the firing patterns. We propose that this type of spatio-temporal correlations may be used to optimize information transfer and storage at hippocampal synapses. The presence of correlation in the ongoing pattern also suggests the influence of pre-stimulus sequence on shaping the post-stimulus responses. Further, these findings call for the modification of the existing neural modeling approaches.

1 Introduction

Spontaneous electrical activity, the neuronal activity which is observed in the absence of obvious external stimuli, is a prominent characteristic of the electrical activity of the central nervous system. Such ongoing or background activity is found from the microscopic level, recorded in the form of action potentials of a single neuron, to the macroscopic level, recorded in the form of global cortical oscillations. The principal feature of spontaneous activity is its extremely irregular fluctuations, i.e. lack of repetitiveness. The spontaneous activity is traditionally assumed as merely ‘noise’ in the nervous system which does not carry any meaningful information [1,2]. The obvious consequence of this assumption is that the post-stimulus response is uncorrelated to the pre-stimulus or ongoing responses. While analyzing single unit (i.e. neuron) data, the mean firing rate is proposed to possess the relevant stimulus-related information, while the temporal dependencies between successive action potentials (i.e. spikes) are completely ignored. In this framework, the inter-spike-interval (ISI) sequence of a single in vivo neuron is theoretically considered as a realization of a homogenous Poisson point process (HPP), i.e. renewal process (RP) [3]. The HPP is memoryless: the occurrence of a spike at any time t1 is independent of the presence or absence of spikes at other times tzt1. Hence, both the spike intervals and the spike counts form the sequences of independent, identically distributed random variables: there is no significant correlation present in the spike train generated by a HPP process, and the HPP interval process is completely described by the inter-spike-interval distribution function, which is a static measure. Contrary to this assumption, recent findings [4-9] show that there are long-term correlations among ISIs. This long-range correlation is indicative of a fractal point process, which is statistically self-similar or scale-invariant. For a renewal process, higher-order interval and count distributions can be computed knowing only the first-order ISI distribution, but for fractal process, correlations and memory effects in the ISI sequence cannot be explained by the first-order ISI distribution. However, detection of the long-range correlation in ISI sequence with finite number of spikes is not a trivial task since it is shown [10-11] that certain signals may appear as a longrange correlated process according to one method but not necessarily according to another method. Thus, instead of emphasizing the results of one method, we recommend to perform multiple and complementary tests of correlation and compare the results to exclude the spurious findings of long-range correlation. In this current study, we analyze the variability of spontaneous activity of in vivo single neuron recorded from human hippocampus. Our main aim is to investigate which process, renewal process or a fractal like process, better characterizes the fluctuations of the ISI patterns? A battery of methods was adopted. We observed that majority of the neurons showed long-range power-law correlations in their firing patterns and these neurons presented statistically significant inter-neuronal correlations. The presence of such long-range correlations is a strong signature of the fractal like process governing the neuronal dynamics.

 

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا