دانلود رایگان ترجمه مقاله بهبود رفتار لرزه ای ساختمان های دیوار برشی بتنی تقویت شده – الزویر 2015
دانلود رایگان مقاله انگلیسی تقویت بتن های بکار رفته در دیوار برشی ساختمان و استفاده از سیستم چندگانه تکانه ای- اهرمی به جهت بهبود بخشی در مقابل عملکردهای لرزه ای – ارتعاشی به همراه ترجمه فارسی
عنوان فارسی مقاله: | تقویت بتن های بکار رفته در دیوار برشی ساختمان و استفاده از سیستم چندگانه تکانه ای – اهرمی به جهت بهبود بخشی در مقابل عملکردهای لرزه ای – ارتعاشی |
عنوان انگلیسی مقاله: | Seismic behavior improvement of reinforced concrete shear wall buildings using multiple rocking systems |
رشته های مرتبط: | مهندسی عمران، سازه، ساختمان های بتنی، مدیریت ساخت و زلزله |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله خوب میباشد |
توضیحات | این مقاله به صورت خلاصه ترجمه شده است، ترجمه صفحات پایانی مقاله موجود نیست. |
نشریه | الزویر – Elsevier |
کد محصول | f235 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات مهندسی عمران |
بخشی از ترجمه فارسی مقاله: چکیده : در سال های اخیر دانشمندان اصولی را برای کاهش خسارات ساختمانی مطرح کردند.سیستم تکانه ای برای محدود کردن ارتعاشات ساختمانی که هم راستای اتلاف انرژی در ستون های پلی میباشد طراحی شده است و تعداد قابل توجهی مقاله در راستای تحقیق و بررسی پایه و اساس سیستم اهرمی در پایه های پلی – دیوار برشی- و قاب و چارچوب های فلزی مهاربندی شده میباشدو چندی از تحقیقات در سمت وسوی عملکرد های چندگانه سیستمی مورد ارزیابی قرار گرفته است. بنابراین نقاط مبهم بسیاری در جزئیات و پاسخگویی به تمامی نکات وجود دارد.بر همین اساس 3نوع متفاوت دیواره برشی در ساختمان (3 نمونه تحت سیستم تکانه ای و 1 نمونه با سیستم مرسوم) طبق 2 واحد از لرزش های پایه قرار گرفته و انالیز شده و نتایج سبب اثبات این مسائل شده اند که در صورت اجرایی سازی فاکتور های اتلاف انرژیو ابزار پس کشیدگی سیستم تکانه ای سبب 1. مقدمه: |
بخشی از مقاله انگلیسی: Abstract In recent years, researchers have proposed damage avoidance design philosophy, instead of traditional design concept, which is inherently damage-oriented, to mitigate suffered damage of buildings. To this end, the rocking system which is a method for limiting seismic forces to structures along with energy dissipation devices and restoring force system have been well established. A considerable number of studies have been conducted to investigate the seismic performances of base-rocking systems on precast segmental bridge piers, shear wall, and steel braced frame. In recent years, a few works have investigated the multiple rocking system behavior; but, there are still vague points about the details and response of this system. Thus, different shear wall buildings (three cases of the rocking structure and one case with a traditional design and 8, 12, 16, and 20 stories) were analyzed under two suits of ground motions levels using precise model. The results demonstrated that, if energy dissipation and post-tensioning tools are implemented properly in the multiple rocking system, (a) higher mode effects are mitigated on shear and moment actions, (b) the drift ratios do not increase approximately compared to the result of traditional wall and get closer to the result of base rocking system, (c) the values of horizontal acceleration remains almost constant with the development of rocking sections over height, (d) residual displacements of buildings are negligible, (e) the centerline elongation of shear walls are not considerable; for taller buildings, they are smaller than shorter ones, and (f) the pounding at the contact surface is not important. 1. Introduction In recent years, researchers have recognized that using rocking systems will mitigate the suffered damage of buildings in strong earthquakes. Compared with the traditional seismic design methods in which structures are inherently exposed to damage and the financial losses caused by repair or replacement coupled with downtime can be devastating, the base rocking system is expected to mitigate damage and improve post-earthquake serviceability demand. Accordingly, damage avoidance design (DAD) philosophy has been proposed by researchers [1,2]. This concept has been improved by integrating rocking, structural flexibility, post-tensioning tools, and dissipation energy devices in order to control higher displacement demands and dynamic instability during severe earthquakes [3]. A considerable number of experimental and analytical studies have been conducted for evaluating the seismic behavior of rocking systems in terms of energy dissipation devices, self-centering tools, impact at base, and values and distribution of the considered design criteria over the height of structures [1,4–8]. The majority of reported researches have been concentrated on the behavior of precast piers of bridges [9–19], while few studies have works on the seismic behavior of precast shear wall [20–25] or steel braced frame with rocking at base [26,27]. Although the seismic performance of base rocking system for bridge piers and shear walls has been well established, no comprehensive research has been carried out on the efficiency of multiple rocking sections over the height of shear walls or steel braced buildings. Distribution of seismic demands over the height of buildings is essentially different from bents of bridges which generally behave as a-single-degree-of-freedom structures. In this regard, Wiebe and Christopoulos [28] investigated the seismic performance of multiple rocking sections over the height of five predetermined shear wall models that were designed using natural period and nearly code based assumptions. Simple and global nonlinear concentrated hinge models at rocking joints were provided to simulate the actual behavior at rocking sections. They concluded that using multiple rocking joints over the height of buildings could mitigate the effects of higher modes on shear and bending moments, while elongations, displacements, and horizontal acceleration increase. However, evaluating the efficiency of multiple rocking systems needs employing a refined and precise nonlinear model at rocking bases and over the building height; also, to develop a new system for DAD, all the considered design criteria which influence the performance of a building should be investigated. Thus in the present research, a comprehensive study was carried out by the precise model of rocking systems. The efficiency of using multiple rocking sections on shear wall buildings was also investigated on the four height levels of buildings (i.e. 8, 12, 16, and 20 stories) and three alternatives of rocking sections (i.e. base, base and mid height, and multiple rocking sections on every second story). For comparison with the conventional design, for each building, one shear wall designed by the current design code was also considered. Seven seismic performance design criteria at two levels of earthquake intensity were evaluated and compared with the traditional design building to discover the effect of multiple rocking sections over height on the structural response. These criteria include inter-story drift ratio, residual drift, elongation at centerline of wall, shear and moment forces, concrete toe crushing at the edge of contact surface in rocking sections, and distribution of dissipated energy through dissipators over height). |