دانلود رایگان مقاله انگلیسی چارچوب کنترل دسترسی پایدار به شبکه محاسبه ابر به همراه ترجمه فارسی
عنوان فارسی مقاله: | چارچوب کنترل دسترسی پایدار به شبکه محاسبه ابر |
عنوان انگلیسی مقاله: | Robust access control framework for mobile cloud computing network |
رشته های مرتبط: | مهندسی کامپیوتر، فناوری اطلاعات و فناوری اطلاعات و ارتباطات، امنیت اطلاعات، رایانش ابری یا محاسبات ابری، شبکه های کامپیوتری، سامانه های شبکه ای، دیتا |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله خوب میباشد |
توضیحات | ترجمه این مقاله به صورت خلاصه انجام شده است. |
نشریه | الزویر – Elsevier |
کد محصول | f145 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات فناوری اطلاعات و ارتباطات |
بخشی از ترجمه فارسی مقاله:
5-7 کاهش حمله ردیابی 8-1 محدودیت و کارهای آتی |
بخشی از مقاله انگلیسی: 7.5. Mitigate tracking threat In the previous section we considered the user as an adversary. However data owner or employer can also be an adversary since their behavior profiling app collects sensor data from user’s device. If the app is malicious then it is obvious that it will send the sensor data to the employer or third-parties who then can monitor or track the user. However, according to the proposed algorithm it is not necessary to send out the sensor data outside the mobile device since mapping is carried out within user device. Employer should certify or validate the app in order to build a trust among users. Since, it is easy to detect whether apps are behaving maliciously [44] we can expect that the employers will not develop an app which send out the sensor data outside the mobile device. 8. Conclusions, limitations and future works In this paper, we proposed robust access control technique which incorporates attributes generated by smart devices to secure the conventional access control framework. In the proposed schemes, data owner incorporates smart device’s dynamic attributes together with predefined static attributes. This approach adds additional layer of security on top of the security available in conventional access control framework. We showed that the efficiencies of the proposed schemes are comparable to that of the conventional schemes while offering better security and flexibility for mobile computing network. 8.1. Limitations and future works Collecting and processing the sensor data to determine the values for dynamic attributes increase the time or communication complexity. At present it is assumed that this will be done in off-line or in parallel to downloading the encrypted data from the cloud. Evaluating this latency for different smart devices in various environments could be a potential extension. Another limitation is the accuracy or number of algorithms available for detecting a user behavior. Potential extension could be on developing an app which aggregates data from all the smart device sensors to profile the user’s behavior. Multiple physical activities such as the way individuals walk or the way we take out the phone from pocket can be used to profile a user. Developing a novel algorithm using machine learning techniques to classify users based on behavior is important to bridge the gap between theory and practice. There are several variants of KP-ABE in literature [45–47]. These variants either enhance the security by adopting fully secure model or improve the complexity by fast decryption technique and outsourcing the pairing computations to the cloud. Hence repeating the proposed technique, i.e., adding dynamic attributes, on top of these schemes will further improve the complexity as well as the security. |