این مقاله انگلیسی ISI در نشریه الزویر در 11 صفحه در سال 2005 منتشر شده و ترجمه آن 16 صفحه میباشد. کیفیت ترجمه این مقاله رایگان – برنزی ⭐️ بوده و به صورت ناقص ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
ارزیابی پیش بینی های مکانی شاخص سایت با استفاده از روش های پارامتری و غیر پارامتری – مطالعه موردی کاج لاجپول |
عنوان انگلیسی مقاله: |
Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods—A case study of lodgepole pine productivity |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 2005 |
تعداد صفحات مقاله انگلیسی | 11 صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | مهندسی منابع طبیعی |
گرایش های مرتبط با این مقاله | جنگلداری، مهندسی جنگلل |
چاپ شده در مجله (ژورنال) | اکولوژی و مدیریت جنگل – Forest Ecology and Management |
کلمات کلیدی | مدل افزایشی تعمیم یافته مدل درخت محور، مدل شبکه ی عصبی،کاج لاجپول، رگرسیون غیر خطی بالغ، پایه های فوق بالغ |
رفرنس | دارد ✓ |
کد محصول | F1200 |
نشریه | الزویر – Elsevier |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 16 صفحه با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه نشده است ☓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
درج فرمولها و محاسبات در فایل ترجمه | به صورت عکس درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
توضیحات | ترجمه این مقاله به صورت ناقص انجام شده است |
فهرست مطالب |
چکیده |
بخشی از ترجمه |
چکیده |
بخشی از مقاله انگلیسی |
Abstract We demonstrate the potential of using least-squares regression, generalized additive model, tree-based model, and neural network model on layers of environmental data grids for mapping site index in a case study. Grids of numerical environmental variables represented layered data, and a sparse site index plot network was located in the grids. Site index data were based on stem analysis (observed height at the index age of 50 years) of 431 lodgepole pine trees in 88 sample plots. The plots were established in a 17,460 km2 boreal mixedwood forest of Alberta, Canada dominated by mature and over-mature stands. The generalized additive model presented a better fit and better adaptability to extreme data (i.e., mature stands) than the least squares nonlinear and other nonparametric techniques, such as the tree-based model and neural network model. Among the four models tested, nonlinear regression is of the data modeling culture, which assumes a stochastic data to relate productivity to environmental variables, and such models are optimized for estimation. Other three models belong to the algorithm modeling culture, which treat the relationship between productivity and independent variables as an unknown black box and try to find a function between them; therefore, these models are more suitable for prediction purpose. Implications for biophysical site index modelling with extreme data are discussed.. 1. Introduction Although there has been a paradigm shift from simple, even-aged silviculture and growth modelling to gap-based silviculture and uneven-aged growth modelling, a quantified surrogate of potential wood production is still required for forest management decisionmaking. Because of its operational importance, site index (SI), defined as the average height of a certain number of the largest trees per hectare at a particular reference age, is a broadly accepted surrogate of potential productivity. There are many cases where site index cannot be adequately estimated because it is a species-specific and phytometric index of site productivity. For example, it cannot be estimated in treeless areas or in stands where the concerned species is not present. Its estimation in young stands is difficult because a slight error in estimation can result in a large error on predicted yields. Various studies have thus attempted to relate SI to biophysical factors (Hunter and Gibson, 1984; Kabzems and Klinka, 1987; Ung et al., 2001; McKenney and Pedlar, 2003), but observed correlations are generally low, and the relationships differ among studies because of no definitive connection between SI and the biophysical variables. Almost all of these studies have used a parametric approach that implied solving two problems: the relationship definition between SI and the biophysical variables and collinearity existing between the explanatory variables in the regression model. Given that a relationship needs to be determined before parameter estimation and that no definite relationship exists, the use of the least square regression technique implies an unknown source of error that could be bypassed with a nonparametric approach. Also, collinearity often exists among biophysical variables when some of these can be expressed as linear combinations of other predictor variables. For example, climate moisture index, which is used in this study, is derived directly from temperature and precipitation, which in turn are related to latitude and elevation. Collinearity affects the statistical estimation of the parameters as it inflates the variance of at least one of the estimated regression coefficients, and consequently also inflates the estimation of the confidence interval around the predicted values (Belsley et al., 1980). To avoid these problems, alternative methods must be identified and assessed. For instance, McKenney and Pedlar (2003) have successfully applied a treebased regression method (TREE) for relating soil, topographic, and climatic attributes to site productivity. TREE has the potential of producing discontinuous SI values; other nonparametric methods such as the generalized additive model (GAM) and the neural network model (NNT) could generate satisfactory results because their outputs are continuous. TREE, GAM, and NNT are considered nonparametric because no functional structure between predictor and response variables is pre-specified. GAM and NNT have been used as exploratory tools in the analysis of species distribution with respect to climatic factors in a landscape study (Yee and Mitchell, 1991) and as tree growth and mortality models (Guan and Gertner, 1991a,b; Sironen et al., 2003), but, as far as we know, they have not yet been used to predict SI in spatial terms. The objective of this study was to assess the usefulness of the TREE, GAM, and NNT nonparametric techniques, and to compare them with the leastsquares nonlinear regression model (NLIN) in developing a spatial SI model for mature stands of lodgepole pine (Pinus contorta var. latifolia) in Alberta, Canada.. |
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
ارزیابی پیش بینی های مکانی شاخص سایت با استفاده از روش های پارامتری و غیر پارامتری – مطالعه موردی کاج لاجپول |
عنوان انگلیسی مقاله: |
Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods—A case study of lodgepole pine productivity |
|