این مقاله انگلیسی ISI در نشریه MDPI در 37 صفحه در سال 2012 منتشر شده و ترجمه آن 32 صفحه میباشد. کیفیت ترجمه این مقاله رایگان – برنزی ⭐️ بوده و به صورت ناقص ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
مکانیسم های اساسی عمر در مسیریابی پروتکل ها برای شبکه های حسگر بی سیم: بررسی و موضوعات آزاد |
عنوان انگلیسی مقاله: |
Fundamental Lifetime Mechanisms in Routing Protocols for Wireless Sensor Networks: A Survey and Open Issues |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 2012 |
تعداد صفحات مقاله انگلیسی | 37 صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | مهندسی فناوری اطلاعات |
گرایش های مرتبط با این مقاله | شبکه های کامپیوتری و سامانه های شبکه ای |
چاپ شده در مجله (ژورنال) | سنسورها – Sensors |
رفرنس | دارد ✓ |
کد محصول | F1441 |
نشریه | MDPI |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 32 صفحه (3 صفحه رفرنس انگلیسی) با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه نشده است ☓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
درج تصاویر در فایل ترجمه | درج نشده است ☓ |
درج جداول در فایل ترجمه | درج نشده است ☓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
توضیحات | بخش های زیادی این مقاله ترجمه نشده است. |
فهرست مطالب |
چکیده |
بخشی از ترجمه |
چکیده |
بخشی از مقاله انگلیسی |
Abstract Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes’ energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues. 1- Introduction Wireless sensor networks (WSNs) are composed of a lot of small, low cost sensor nodes that work together to measure various parameters of the environment and send the data to a unique or several sinks where they will be processed [1]. WSNs have a wide range of uses in military, medical, metropolitan and industrial venues. They are employed in many applications such as security surveillance, battlefield and habitat monitoring, intrusion detection, and target tracking purposes. Although reducing the size of sensors could make them cheaper, this also requires that all hardware equipment, specially the batteries, be extremely small. Since the sensor nodes should be functional for a long period of time and battery replacement in harsh environments like battlefields is usually impossible, nodes may lose their energy very fast, thus becoming nonfunctional in a short time. This situation can negatively affect the whole network connectivity, fault tolerance and lifetime. Therefore, optimization for energy consumption is an important issue, especially to prolong network lifetime in WSNs [2]. To address this problem, a variety of approaches are implemented in the area of routing strategies, which play a key role in network functionality and performance [3]. Routing in wireless sensor networks is very challenging. One of the problems that affect the network lifetime refers to nodes in the vicinity of the sink, whose activity imposes a high traffic on this series of sensor nodes. In this state, the nodes that are closer to the sink lose their energy very fast. These nodes are the neighbors located at one hop away from a single static sink. Not only do they utilize energy to relay the data from any other nodes through the network to the sink, but also for sending their own data. This problem is known as the “sink neighborhood problem” [4], which can lead to premature network disconnection. When most of the sink’s neighbors’ energy is fully depleted, this isolates the sink from the rest of the network, while there is still a huge potential for most of the sensor nodes to continue to perform their tasks and functionalities normally. One of the basic solutions for the sink neighborhood problem is to employ more than one static sink in the network. Using multiple sinks [5–7] that are statically distributed across the sensor field, it is possible to spread traffic load uniformly among sensor nodes. This can enhance the network lifetime and decrease the end-to-end delays significantly. Another solution for the sink neighborhood problem is to provide some of the network elements with mobile capability [4]. A good strategy to balance energy consumption for data transmission across the network could be replacing the neighbors of the sink. Since nodes’ power is limited, a mobilizer unit in mobile nodes consumes the remaining energy faster than under static conditions. The key idea is to maintain the sensors stationary while moving the sink periodically to the parts of the network with sufficient energy. This can prevent network partitioning and consequently prolong the network lifetime. Many protocols [8–11] are proposed for sink mobility, but they differ from each other in the aspect of mobility itself [4]. For instance, in some applications where the sink goes through the network to collect data by itself, an uncontrolled sink movement pattern is applied to the approaches. This means the network may be unable to control the sink movement by applying a specific trajectory based on the nodes’ remaining energy or the amount of traffic at each sensor [4]. On the other hand, controlled sink mobility [10,11] can efficiently improve the network lifetime without any negative effects on end-to-end delay. Although the sink neighborhood problem is one of the most important reasons for network partitioning, there is another problem that can affect the network lifetime. In fact, using a single optimal path [12,13] for every communication may gradually drain the energy of nodes which are located on the route. This causes some problems such as node and link failure due to unbalanced depletion of nodes’ batteries across the network. Applying multi-path routing [14,15] in WSNs could result in traffic and energy load balancing over the network. Furthermore, it is not necessary to update the route information periodically, which wastes a remarkable amount of the nodes’ power [16]. The sensor nodes are used to forward the data and control packets to the next hop at a maximum power level, which results in fast energy exhaustion. In this state, by employing a power control scheme [17–19] in routing protocols in which the nodes are able to adjust the transmission power level based on the distance from the next hop, the relay nodes can conserve much more energy. Finally, bio-inspired algorithms [20] have recently been added to the above category as an important class since they can optimize the route construction phase. Bio-inspired protocols which are designed based on insect sensory systems try to construct the shortest path between the source and the destination so that it can conserve much more energy. Our aim in this paper is to help readers better understand the fundamental energy-aware mechanisms applicable to routing algorithms in wireless sensor networks and point out the potential for improving network lifetime making use of these techniques. We present a comprehensive classification for these mechanisms and discuss a variety of the state-of-the-art energy-efficient routing and cross-layer protocols under this taxonomy. As mentioned before, multi-path methods can avoid network partitioning by distributing traffic loads on most of the sensor nodes while multiple sink and mobile sink methodologies overcome this problem by changing the sink’s neighbors periodically and balancing the energy consumption in the sink vicinity. Power control schemes can save nodes’ energy by decreasing the power needed to transmit data packets to the next hop in the routing protocols while bio-inspired algorithms can optimize the route construction phase by finding the shortest path for data routing. We categorize the protocols using power control techniques as cross-layer schemes, while the rest are classified as simultaneous mechanisms in the network layer. To the best of our knowledge, our work is the first effort to categorize lifetime improvement strategies applied in routing for WSNs. The rest of this paper is organized as follows: we present the related work in Section 2. Background and preliminaries is presented in Section 3. In Section 4, we discuss various mechanisms using multiple sinks and mobile sinks to balance the energy consumption of the network. We continue in this section with a presentation of some routing mechanisms using multiple paths, power control and bio-inspired protocols to save node energy and prolong network lifetime. A comparison among different mechanisms is shown in Section 5. Discussion and open issues for future studies is given in Section 6. Finally, Section 7 concludes the paper. |
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
مکانیسم های اساسی عمر در مسیریابی پروتکل ها برای شبکه های حسگر بی سیم: بررسی و موضوعات آزاد |
عنوان انگلیسی مقاله: |
Fundamental Lifetime Mechanisms in Routing Protocols for Wireless Sensor Networks: A Survey and Open Issues |
|