دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
دگرسانی هیدروترمال و رگه ها در کانسارهای طلا – نقره اپی ترمال منطقه Waitekauri، Hauraki Goldfield، نیوزلند |
عنوان انگلیسی مقاله: |
Hydrothermal Alteration and Veins at the Epithermal Au-Ag Deposits and Prospects of the Waitekauri Area, Hauraki Goldfield, New Zealand |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 2011 |
تعداد صفحات مقاله انگلیسی | 29 صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | زمین شناسی |
گرایش های مرتبط با این مقاله | سنگ شناسی، زمین شناسی محیطی |
چاپ شده در مجله (ژورنال) | زمین شناسی اقتصادی – Economic Geology |
رفرنس | دارد ✓ |
کد محصول | F1135 |
نشریه | Geoscienceworld |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 17 صفحه با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه نشده است ☓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
توضیحات | ترجمه این مقاله به صورت خلاصه انجام شده است. |
فهرست مطالب |
خلاصه
معرفی
زمین شناسی منطقه ای
زمین شناسی محلی
نمونه گیری و تکنیک های آنالیز
دگرسانی های هیدروترمال
کوارتز
آلبیت و آدولاریای هیدروتررمال
کلریت
اپیدوت
پیریت، اکسی هیدروکسید و هماتیت
کلسیت
کائولینیت
انواع رگه ها و کانی شناسی آن ها
پیریت
کوارتز
کوارتز – هماتیت – پیریت و هماتیت
زئولیت (لامونیت، کلینوپتیلولیت، مردنیت و استیلبیت)
کلسیت
سکانس پاراژنتیک کانی های دگرسانی و رگه ها
سیال درگیر
ایزوتوپ پایدار
بحث
دمای تشکیل دگرسانی ها و رگه ها
سیستم هیدروترمال Waitekauri
طلا کجاست؟
نتیجه گیری
|
بخشی از ترجمه |
چکیده |
بخشی از مقاله انگلیسی |
Abstract The Waitekauri area of the Hauraki goldfield, New Zealand, contains several adularia-sericite epithermal Au-Ag deposits and prospects. From west to east, the area contains the Sovereign, Jubilee, Scimitar, Scotia, Teutonic, and Jasper Creek deposits and prospects, which are hosted by andesitic and dacitic flows, breccias, and localized pyroclastic and air fall deposits. Drill core reveals spatial and temporal zonation of alteration and vein minerals along a 3-km-long composite cross section through the area. Most host rocks are intensely altered, with 100 percent of the igneous minerals replaced by hydrothermal minerals, although the alteration intensity becomes more variable and weaker toward the east. Alteration minerals include quartz, adularia, albite, chlorite, pyrite, illite, interstratified illite-smectite, smectite, calcite, hematite, and minor epidote. Many of these minerals have zoned distributions; adularia is widespread at Sovereign, but is restricted to shallow levels at both Scotia and Jasper Creek. Albite occurs in a discrete zone below adularia at Scotia, and minor epidote is restricted to Sovereign and Jubilee. Illite occurs throughout Sovereign and Jubilee and at the western margin of Scotia and Scimitar, where it grades eastward into interstratified illite-smectite and smectite at Teutonic and Jasper Creek. Veins are typically less than 10 cm wide, but have diverse mineralogy with zoned distributions. Quartz veins dominate at Sovereign and Jubilee, whereas calcite veins are more abundant at Scotia, Scimitar, and Jasper Creek. Laumontite occurs at Scotia and locally at Scimitar, whereas veins of clinoptilolite and mordenite ± calcite occur at Jasper Creek and stilbite veins occur at Teutonic. Fluid inclusions in quartz and calcite homogenized between 132º and 310ºC and trapped a dilute solution with an apparent salinity of less than 2.6 wt percent NaCl equiv. Homogenization temperatures are highest at Sovereign (avg. 241ºC), Jubilee (avg 239ºC), and Scimitar (avg 236ºC), lower at Scotia (avg 204ºC) and lowest at Teutonic (avg 168 ºC) and Jasper Creek (avg 162ºC). Estimated positions of the paleowater table above Sovereign, Jubilee, Scimitar, Scotia, Jasper Creekg and Teutonic relative to present elevations was at least 690, 750, 575, 450, 225, and 150 m above sea level, respectively; the deposits and prospects, therefore, span a 600-m vertical interval. Individual deposits and prospects have undergoen at least 35 to more than 455 m of erosion with the greatest erosion to the west. Alteration intensity, alteration and vein mineral distributions, and fluid inclusion microthermometry are interpreted to indicate that Sovereign and Jubilee formed at relatively high temperatures, whereas Teutonic and Jasper Creek formed at relatively cooler temperatures. Several hydrologic reconstructions are possible, including (1) a single hydrothermal system with an inclined water table and significant lateral outflow to the east, or 2) a single low-relief hydrothermal system with a flat-lying water table that has subsequently been displaced by postmineral faults or tilted approximately 10º to the east. Regardless of the preferred reconstruction, the Sovereign and Jubilee deposits appear to have formed in the main zone of fluid upflow, whereas the Teutonic and Jasper Creek prospects appear to have formed toward the margin. Moreover, the greatest erosion has occurred at the Jubilee and Sovereign deposits (~300–400 m), and these may represent the roots of a more extensive vein network that has largely been eroded.. 1. Introduction GOLD AND SILVER in adularia-sericite epithermal deposits typically occur in structurally controlled veins that are mineralized over a relatively confined vertical extent and are enveloped by extensive zones of hydrothermal alteration that may extend over tens, hundreds, or thousands of meters (e.g., Mule Canyon, Nevada: John et al., 2003; Comstock: Hudson, 2003; Favona, New Zealand: Simpson and Mauk, 2007). Many papers describe alteration in terms of general mineral associations that have been adopted from terminology used to describe alteration of porphyry Cu deposits (i.e., potassic, argillic, propylitic), whereas others describe the distribution of individual alteration minerals and vein types (e.g., Conrad et al., 1992; Hudson, 2003; Simpson and Mauk, 2007). Although the former method is very useful for field mapping, the recognition and delineation of associations is complicated by overlapping mineralogy and does not take into account the formation of different minerals at different times. In geothermal fields, the active analogues of some epithermal deposits, the distributions of individual alteration minerals are routinely determined during drilling to assess reservoir temperature, inferred permeability, and fluid compositions that are only directly measurable following drilling and well testing (e.g., Henley and Ellis, 1983; Reyes, 1990; Simmons and Browne, 2000; Mas et al., 2006). Here, we describe the geologic setting, hydrothermal alteration, and vein types at the volcanic rock-hosted epithermal Au-Ag deposits and prospects in the Waitekauri area of the southern Hauraki goldfield, North Island, New Zealand (Figs. 1, 2). The area has been well drilled, and we present alteration and vein mineralogy and fluid inclusion data along three cross sections that total 3 km in length; these sections range from the center to the margin of the hydrothermally altered area, and provide a 600-m reconstructed vertical range of the Waitekauri deposits and prospects. Booden et al. (2011) further document the geochemistry of hydrothermal alteration along these sections. We use alteration, vein, and fluid inclusion data to interpret the physical and chemical conditions that prevailed during hydrothermal activity, which allows us to infer the nature of the hydrothermal system(s) that formed these deposits and prospects. Regional Geology The Waitekauri deposits and prospects occur in the southern part of the Hauraki goldfield (Fig. 1), a 200-km-long by 40-km-wide metallogenic province that contains approximately 50 epithermal Au-Ag deposits and several porphyry Cu-Au-Mo occurrences (Christie et al., 2007). Deposits are hosted in a Miocene to Pliocene continental margin volcanic arc, the subaerial sector of the Coromandel volcanic zone that formed due to convergence along the Pacific-Australian plate boundary (Nicholson et al., 2004; Mortimer et al., 2007). Basement rocks consist of Late Jurassic graywacke and argillites of the Manaia Hill Group that are unconformably overlain by Miocene to Pliocene (ca. 18–4 Ma) andesitic and dacitic flows and volcaniclastic rocks of the Coromandel Group (Skinner, 1986, 1995; Adams et al., 1994). These groups are intruded by subvolcanic dikes and rare quartz diorite to granodiorite stocks with locally associated porphyry Cu-Au-Mo mineralization (Brathwaite et al., 2001a). Late Miocene to Pliocene (ca. 11–1.9 Ma) rhyolitic flows and pyroclastic rocks of the Whitianga Group form several caldera complexes with eruptive products that interfinger with and overlie the Coromandel Group andesite (Skinner, 1986; Adams et al., 1994). Farther south, the volcanic rocks of the Coromandel volcanic zone merge with and are overlain by Quaternary (2.0 Ma to present) volcanic rocks of the Taupo volcanic zone (Houghton et al., 1995; Briggs et al., 2005). The Hauraki goldfield is cut by north-northwest– and north-northeast– to east-northeast–striking faults (Skinner, 1986). North-northwest–striking faults displace rocks downward to the east and west, whereas most north-northeast– to east-northeast–striking faults displace rocks downward to the south; this results in increased exposure of the graywacke basement in the north, and thicker exposures of volcanic rocks to the south (Fig. 1). |