دانلود رایگان مقاله انگلیسی فناوری آب شیرین کن حرارتی با انرژی خورشید به همراه ترجمه فارسی
عنوان فارسی مقاله: | فناوری آب شیرین کن حرارتی با انرژی خورشید |
عنوان انگلیسی مقاله: | Solar thermal desalination technologies |
رشته های مرتبط: | مهندسی انرژی، شیمی، شیمی تجزیه و انرژی های تجدیدپذیر |
فرمت مقالات رایگان | مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF میباشند |
کیفیت ترجمه | کیفیت ترجمه این مقاله خوب میباشد |
توضیحات | ترجمه صفحات پایانی موجود نیست |
نشریه | الزویر (Elsevier) |
کد محصول | F116 |
مقاله انگلیسی رایگان |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان |
دانلود رایگان ترجمه مقاله |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات زیست شناسی |
بخشی از ترجمه فارسی: استفاده از انرژی خورشیدی در فرایند های آب شیرین کن حرارتی یکی ازکاربرد های مهم و روزافزون انرژی های تجدید پذیری است. آب شیرین سازی خورشیدی می تواند به طور مسقیم: استفاده از انرژی خورشیدی برای تولید آب مقطر در کلکتور خورشیدی و یا به طور غیر مستقیم، ترکیب روش ها و فنون آب شیرین کنی سنتی نظیر آب شیرین کن فلش چند مرحله ای (MSF)، فشرده سازی بخار (VC)، اسمز معکوس (RO)، تقطیر غشایی (MD) و الکترودیالیز، با کلکتور های خورشیدی برای تولید گرما انجام شود. آب شیرین سازی مستقیم خورشیدی در مقایسه با روش های غیر مستقیم نیازمند سطح وسیع تر بوده و دارای بازدهی نسبتا کم تری است. با این حال نسبت به کارخانه های آب شیرین کنی غیر مستقیم در تولید کوچک مقیاس به دلیل هزینه نسبتا پایین و سادگی مناسب تر است. این مقاله به توصیف چندین روش آب شیرین سازی در مراحل تجاری و پایلوت توسعه می پردازد. تاکید مهم و اولیه بر فناوری های مناسب در مناطق دور دست است به خصوص فناوری هایی را که بتوان آن ها را با سیستم های حرارتی انرژی خورشیدی تلفیق کرد. |
بخشی از مقاله انگلیسی: Abstract The use of solar energy in thermal desalination processe s is one of the most promising applications of the renewable energies. Solar desalination can either be direct; use solar energy to produce distillate directly in the solar collector, or indirect; combining conventional desalination techniques, such as multistage flash desalination (MSF), vapor compression (VC), reverse osmosis (RO), membrane distillation (MD) and electrodialysis, with solar collectors for heat generation. Di rect solar desalination compared with the indirect technologies requires large land areas and has a relatively lo w productivity. It is however competitive to the indirect desalination plants in small-scale production due to its relatively low cost and simplicity. This paper describes several desalination technologies in commercial and pilot stages of developmen t. The primary focus is on those technologies suitable for use in remote areas, especially those which coul d be integrated into solar thermal energy systems. Keywords: Solar energy; Desalination; Solar stills 1. Introduction The lack of potable water poses a big problem in arid regions of the world where freshwater is becoming very scarce and expensive. Clean drink- ing water is one of the most important international health issues today. Th e areas with the severest water shortages are the warm arid countries in the Middle East and North Africa (MENA) region. These areas are characterized by the increase in ground water salinity and infrequent rainfall. The increasing world population growth together with the increasing indu strial and agricultural activities all over the world contributes to the depletion and pollution of freshwater resources. Desalination is one of mankind’s earliest forms of water treatment, and it is still a popular treatment solution throughout the wo rld today. In nature, solar desalination produces rain when solar radi- ation is absorbed by the sea and causes water to evaporate. The evaporated water rises above the surface and is moved by the wind. Once this vapor cools down to its dew point, condensation occurs,and the freshwater comes down as rain. This basic process is responsible for the hydrologic cycle. This same principle is us ed in all man-made distil- lation systems using altern ative sources of heating and cooling. Desalination uses a large amount of energy to remove a portion of pure water from a salt water source. Salt water (feed water) is fed into the process, and the result is one output stream of pure water and another of wastewater with a high salt concentration. It has been estimated by Kalogirou [23] that the production of 1000 m 3 per day of freshwater requires 10,000 tons of oil per year. This is highly significant as it involves a recurrent energy expense which few of the water-short areas of the world can afford. Large commercial desalination plants using fossil fuel are in use in a number of oil-rich countries to supplement the traditional sources of water supply. People in many other areas of the world have neither the money nor oil resources to allow them to develop on a similar manner. Problems relevant to the use of fossil fuels, in part, could be resolved by considering possible utilization of renewable resources such as solar, biomass, wind, or geothermal energy. It often happens that the geographical areas where water is needed are well gifted with renewable energy sources (RES). Thus, the obvious way is to combine those renewable energy sources to a desalination plant, in order to provide water resources as required. In fact, most developing countries, with vast areas but having no access to electric grid, appear to be well versed in renewable energies. Such sources, able to be used directly even at far remote and isolated areas, could be exploited to power low to medium scale desalina- tion plants. The World H ealth Organization esti- mates that over a billion people lack access to purified drinking water and the vast majority of these people are living in rural areas where the low population density a nd remote locations make it very difficult to install the traditional clean water solutions. Recently, considerable attention has been given to the use of renewable energy as sources for desalination, especial ly in remote areas and islands, because of the high costs of fossil fuels, difficulties in obtaining it, attempts to conserve fossil fuels, interest in reducing air pollution, and the lack of electrical power in remote areas. It is, however, to be noted that in spite of the aforesaid favorable characteristics, the renewable energy contribution to cover energy demand worldwide, though increasing, is still marginal. Aside from the hydroelectric energy, the ot her principal resources (solar, wind, geothermal) cover together little more than 1% of the energy production worldwide [9]. Owing to the diffuse nature of solar energy, the main problems with the use of solar thermal energy in large-scale desalination plants are the relatively low productivity rate, the low thermal efficiency and the consid erable land area required. However, since solar desalination plants are char- acterized by free energy and insignificant opera- tion cost, this technology is, on the other hand, suitable for small-scale production, especially in remote arid areas and islands, where the supply of conventional energy is scarce [28]. Apart from the cost implications, there are environmental concerns with regard to the burning of fossil fuels. The coupling of renewable energy sources with desalination processes is seen by some as having the potential to offer a sustainable route for increasing the supplies of potable water. Solar energy can directly or indirectly be har- nessed for desalination. Collection systems that use solar energy to produce di stillate directly in the solar collector are called direct collection systems whereas systems that combine solar energy col- lection systems with co nventional desalination systems are called indir ect systems. In indirect systems, solar energy is used either to generate the heat required for desalination and/or to generate electricity that is used to provide the required electric power for conven tional desalination plants such as multi-effect (ME), multi-stage flash (MSF) or reverse osmosis (RO) systems [16]. |