دانلود ترجمه مقاله تاثیر TiO2 بر ویسکوزیته و ساختار پسماند در فلزات نوع کوره های حرارت دهی – انتشارات وایلی



دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله: اثر TiO2 بر ویسکوزیته و ساختار پسماند در فلزات نوع کوره های حرارت دهی
عنوان انگلیسی مقاله: Effect of TiO2 on the Viscosity and Slag Structure in Blast Furnace Type Slags


مشخصات مقاله انگلیسی (PDF)
سال انتشار مقاله  ۲۰۱۲
تعداد صفحات مقاله انگلیسی  ۷ صفحه با فرمت pdf
رشته های مرتبط با این مقاله مهندسی مواد، شیمی و مهندسی معدن
گرایش های مرتبط با این مقاله شناسایی و انتخاب مواد مهندسی، شکل دادن فلزات، متالورژی صنعتی، شیمی معدنی، صنایع فلزی و فرآوری مواد معدنی
مجله مربوطه تحقیقات بین المللی فولاد (steel research international)
دانشگاه تهیه کننده  گروه علم مواد و مهندسی، دانشگاه یونسی، سئول، کره
شناسه شاپا یا ISSN ISSN ۱۶۶۲-۷۴۸۲
لینک مقاله در سایت مرجع لینک این مقاله در سایت wiley
نشریه Wiley



مشخصات و وضعیت ترجمه مقاله (Word)
تعداد صفحات ترجمه مقاله  ۱۶ صفحه با فرمت ورد، به صورت تایپ شده و با فونت ۱۴ – B Nazanin
ترجمه اشکال ترجمه توضیحات زیر اشکال انجام شده و اشکال و نمودارها به صورت عکس در فایل ترجمه درج شده است.


فهرست مطالب:


روش های آزمایشی
مواد و روش ها
نتایج و بحث
اثر تیتانیوم اکسید بر ویسکوزیته
نتیجه گیری



بخشی از ترجمه:


در این مطالعه، اثر تیتانیوم اکسید بر ویسکوزیته ناحیه تماما مایع سیستم CaO–SiO2–۱۷mass% Al2O3–۱۰mass% MgO–TiO2 در نسبت های مختلف CaO/SiO2، همبستگی مستقیم و مثبتی با ساختمان پسماند فلز حرارتی داشت.
افزایش تیتانیوم اکسید منجر به کاهش ویسکوزیته با تاثیر بر ساختار شبکه سیلیکات شد که ورقه های پیچیده سیلیکاته به ساختار های ساده تر شکسته تر شدند با این حال ساختارهای آلومینات به نظر می رسد متاثر از افزایش تیتانیوم اکسید نمی باشند. هر دو آنالیز FTIR و رامان حاکی از دپلی مریزاسیون پسماند بوده و مقادیر ویسکوزیته را به مقدار تیتانیوم اکسید به طور مستقیم ارتباط می دهند. به علاوه، افزایش نسبت CaO/SiO2 به نظر می رسد در کاهش ویسکوزیته در مقایسه با افزایش تیتانیوم اکسید کارامد تر باشد. با توجه به وابستگی درجه حرارت نسبت ۱٫۲ CaO/SiO2، انرژی اکتیواسیون جریان ویسکوز بین ۲۲۶ و ۲۶۰ کیلوژول بر مول بسته به ترکیب فلز می باشد.


بخشی از مقاله انگلیسی:


 Introduction Cost issues related to integrated steel mill operations and unavailability of high grade raw materials with high concentrations of iron has sparked interest in the use of other potential sources of iron bearing materials once regarded as uneconomical for the present day integrated steel mill operations. In particular, iron ores consisting of significant TiO2 such as ilmenite is comparatively abundant in Australia and other parts of the world. These ores due to the high TiO2 content may result in significant issues such as lower reduction degree of the ore,[1–۴] variations in the liquidus temperature of the slag,[5–۷] reduced refining capacity of the slag,[8–۱۰] and slag viscosity deviations from optimum processing conditions.[11–۱۵] However, potential benefits of TiO2 in the blast furnace slags have also been realized from work done by Morizane et al.[9] and others.[15–۱۸] By forming a protective layer of titanium carbo-nitride on the refractory brick, the premature failure and erosion of the hearth was found to be inhibited. Thus, both the thermophysical and chemical properties of the slag can change with TiO2 additions and a fundamental understanding on these topics, in particular the effect of viscosity, is essential to maintain and optimize the overall efficiency of the blast furnace operations. Handfield and Charette[12] showed small TiO2 additions can decrease the slag viscosity, but large TiO2 additions had the opposite effect. Ohno and Ross[13] described TiO2 additions to increase slag viscosity in the CaO–SiO2–Al2O3– TiO2 slags under reducing conditions. Work done by Shankar et al.[19] showed the effect of TiO2 in the CaO– SiO2–MgO–Al2O3 slag system under Ar, where TiO2 up to 2 mass% decreased the viscosity at various fixed extended Vee ratio [(CaO þ MgO)/(SiO2 þ Al2O3)] between 0.46 and 0.83. Saito et al.[14] also studied the effect of TiO2 in the CaO–SiO2–MgO–Al2O3 slag system at 10 and 20 mass% TiO2 content. TiO2 lowered the viscosity of the slag and the corresponding activation energy of viscous flow decreased with TiO2 content. Thus, slag viscosity can be affected by the amount of TiO2 additions. However, to the knowledge of the authors, the viscosity data between 0 and 10 mass% TiO2 is not well defined for blast furnace type slags and its correlation with the slag structure has yet to be fully understood. Therefore, understanding and controlling the effects of TiO2 on the viscosity of blast furnace type slags, when raw materials’ containing significant amounts of TiO2 such as ilmenite is utilized, would be essential in maintaining stable blast furnace operations. In this work, the influence of TiO2 on the viscous behavior of calcium-silicate based slags with 17 mass% Al2O3 and 10 mass% MgO based slags have been studied using a rotating viscometer. To directly correlate the relationship between slag structure and viscosity, flux samples from the fully liquid region at 1773 K were quenched and analyzed using Fourier transform infra-red (FTIR) and Raman spectroscopy.2. Experimental Methods 2.1. Materials Slags were prepared using reagent grade chemicals of CaO, SiO2, MgO, Al2O3, and TiO2. Using a Pt-10 mass% Rh crucible, slags were premelted under 0.4 L min1 of Ar to obtain a homogeneous mixture of CaO–SiO2–۱۷ mass% Al2O3–۱۰ mass% MgO. After 3 h, the homogenized samples were quenched and crushed for the primary experiments. Chemical composition of the post-experimental slags was analyzed using X-ray fluorescence (XRF) spectroscopy (S4 Explorer; Bruker AXS GmbH, Karlsruhe, Germany) and no apparent change was observed. Thus, the initial weighed mixture was taken as the slag composition. The experimental chemical composition is given in Table 1. 2.2. Apparatus and Procedure The viscosity was measured using a rotating spindle connected to a calibrated Brookfield digital rheometer (LVDVIIþ; Brookfield Engineering Laboratories, Middleboro, MA). The details of the experimental apparatus have been given elsewhere,[20,21] but a schematic diagram is shown in Figure 1. Samples weighing 120 g were prepared according to Table 1 and placed in a Pt-10 mass% Rh crucible (H: 60 mm, ID: 40 mm). Furnace temperature was calibrated using a reference B-type thermocouple and controlled within 3 K using a PID controller. Slag samples were heated to 1773 K and sufficiently held for more than an hour in an Ar gas atmosphere to achieve thermal equilibrium. Measurements were taken at each target temperature during a 58C min1 cooling cycle after 30 min of soaking and in the fully liquid region of the slag system well above the break temperature (TBr) of each slag composition. The break temperature has been described in detail by Kim and Sohn[21] and Sridhar et al.[22] Viscosity measurements taken at temperatures higher than the break temperature are assumed to be in the fully liquid region of the slag system, of which the present experimental measurements have been done. The break temperature can easily be identified using the example given in Figure 2 for the CaO–SiO2–۱۷ mass% Al2O3–۱۰ mass% MgO–۵ mass% TiO2 slag at constant CaO/SiO2 of 1.2. The natural logarithm of viscosity (ln h) as a function of reciprocal temperature (1/T) shows a significant increase below temperatures of 1598 K, which is the starting temperature for the formation of large solid precipitates. Viscosity measurements were also taken during a heating cycle of 58C min1 and 30 min of soaking time, but no appreciable difference was found during measurements in the fully liquid region of the slag system and thus subsequent viscosity measurements were done during the cooling cycle.


دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله: اثر TiO2 بر ویسکوزیته و ساختار پسماند در فلزات نوع کوره های حرارت دهی
عنوان انگلیسی مقاله: Effect of TiO2 on the Viscosity and Slag Structure in Blast Furnace Type Slags
برای دانلود رایگان مقاله انگلیسی روی عنوان انگلیسی مقاله کلیک نمایید.برای خرید ترجمه آماده ورد، روی عنوان فارسی مقاله کلیک کنید.


دانلود رایگان مقاله انگلیسی


خرید ترجمه فارسی مقاله با فرمت ورد


خرید نسخه پاورپوینت این مقاله جهت ارائه


ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد.