دانلود مقاله ترجمه شده تنظیم ولتاژ انرژی خروجی غیر مستقیم عامل تبدیل گر تقویت کننده DC-DC – مجله IEEE
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
|
|
عنوان فارسی مقاله: | تنظیم ولتاژ انرژی خروجی غیر مستقیم عامل تبدیل گر تقویت کننده DC-DC در حالت های هدایت پیوسته و ناپیوسته با استفاده از روش درجه ی سطح آزاد انطباقی |
عنوان انگلیسی مقاله: | Indirect output voltage regulation of DC–DC buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach |
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | ۲۰۱۳ |
تعداد صفحات مقاله انگلیسی | ۱۰ صفحه با فرمت pdf |
رشته های مرتبط | برق، کامپیوتر، مکانیک گرایش برق قدرت، مهندسی کنترل، مهندسی ابزار دقیق |
مجله | برق قدرت (Power Electronics) |
دانشگاه | دانشکده مهندسی برق، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران |
شناسه شاپا یا ISSN | ISSN ۱۷۵۵-۴۵۳۵ |
لینک مقاله در سایت مرجع | لینک این مقاله در سایت IEEE |
نشریه | IEEE |
مشخصات و وضعیت ترجمه مقاله (Word) | |
تعداد صفحات ترجمه مقاله | ۲۳ صفحه با فرمت ورد، به صورت تایپ شده و با فونت ۱۴ – B Nazanin |
ترجمه تصاویر | ترجمه توضیحات زیر تصاویر انجام شده و اشکال و نمودارها به صورت عکس در فایل ترجمه درج شده است. بارات روی اشکال و جداول ترجمه نشده است. |
فهرست مطالب:
چکیده
۱ مقدمه
۲ مدل های کامپیوتری بیان فضایی مقدار متوسط تبدیل گر تقویت کننده ی DC DC
۳ طراحی تنظیم کننده ی غیر خطی انطباقی
۴ شبیه سازی و نتایج کاربردی
۴ ۱ عمل باک
۴ ۲ عمل بوست یا تقویت کردن
۴ ۳ انتقال بین عملیات CCM و DCM
۵ نتیجه گیری
بخشی از ترجمه:
در این مطالعه، تنظیم کننده ی غیر خطی انطباقی برای تبدیل گر تقویت کننده ی DC-DC طراحی می شود که در برابر تغییرات بار خارجی تبدیل گر، تغییرات ولتاژ توان ورودی و خطای تخمینی پارامتر، مقاوم و پایدار است. تنظیم کننده ی پیشنهادی بر اساس خطی بودن توان ورودی- انرژی خروجی با استفاده از روش درجه ی سطح آزاد انطباقی قابل بهره برداری است. تنظیم کننده می تواند در هر دو حالت هدایت پیوسته و ناپیوسته به کار رود (CCM و DCM). به علت نوع فاز غیر حداقلی تبدیل گر تقویت کننده، ولتاژ انرژی خروجی این تبدیل گر به طور غیر مستقیم توسط ردگیری شدت جریان منبع القاگر کنترل می شود. شدت جریان منبع القاگر توسط تنظیم کننده ی متداول PI تولید می شود. با استفاده از جعبه ی ابزار MATLAB/سیمولینک و پردازنده ی پیام رقمی مستقل TMS320F2810 از دستگاه های اندازه گیری تگزاس، تعدادی شبیه سازی و نتایج کاربردی برای بررسی قابلیت و کارایی روش کنترل پیشنهادی ارائه می شوند.
۱ مقدمه
تبدیل گر های DC-DC به تازگی مقدار اهمیت فزاینده ای را هم در مدار های الکترونیکی برقی و هم در کنترل اتوماتیک برانگیخته اند. این امر به علت قلمروی کاربست پذیری گسترده ی شان است که از لوازم داخلی به سیستم های ارتباط پیشرفته کشیده می شود. آنها هم چنین در کامپیوتر ها، دستگاه های الکترونیکی صنعتی، لوازم کار با باتری قابل حمل و تهیه ی بی وقفه ی برق استفاده می شوند.
از نظر کنترل اتوماتیک، این تبدیل گر های حلقه بسته ی برقی به طور ذاتی سیستم های غیر خطی هستند. منابع غیر خطی اصلی غیر خطی سوئچینگ و عمل متقابل در میان مدول های تبدیل گر هستند. به عنوان یک تبدیل گر غیر خطی با تعدادی پارامتر نامعلوم، با فرض تغییرات بار خارجی و تغییرات ولتاژ توان ورودی آن، تحلیل پیام کوچک قادر نیست عملکرد های ناپایدار و حالت ثابت تبدیل گر را به دقت پیش بینی کند.
بخشی از مقاله انگلیسی:
Abstract: In this study, an adaptive non-linear controller is designed for DC–DC buck/boost converter which is robust and stable against converter load changes, input voltage variations and parameter uncertainties. The proposed controller is developed based on input–output linearisation using an adaptive backstepping approach. The controller can be applied in both continuous and discontinuous conduction modes (CCM and DCM). Owing to non-minimum phase nature of buck/boost converter, the output voltage of this converter is indirectly controlled by tracking the inductor reference current. The inductor reference current is generated by a conventional PI controller. Using a MATLAB/Simulink toolbox and a stand-alone TMS320F2810 digital signal processor from Texas Instruments, some simulations and practical results are presented to verify the capability and effectiveness of the proposed control approach. 1 Introduction DC–DC converters have recently aroused an increasing deal of interest both in power electronics and in automatic control. This is owing to their wide applicability domain that ranges from domestic equipment to advanced communication systems. They are also used in computers, industrial electronics, battery-operated portable equipment and uninterruptible power supply [1]. From an automatic control view-point, these closed-loop power converters are inherently non-linear systems. The major sources of non-linearity are switching non-linearity and interaction among the converter modules. For a non-linear converter with some uncertain parameters, assuming the load changes and its input voltage variations, small-signal analysis is not able to predict the converter steady-state and transient performances accurately [2]. To solve these problems, in the past decades some researchers have proposed different non-linear control methods such as sliding mode, fuzzy and adaptive control approaches [3–۵]. Among these switching control methods, pulse width modulation (PWM) based on fast switching and duty ratio control may be the most extensively used. It is worthwhile to mention that the converter must be stable and robust against load disturbance, variations in input voltage and uncertainties that usually exist in converter parameters because of magnetic saturation and temperature variation. It should be considered that, because of non-minimum phase nature of boost and buck/boost converters [6], it is difficult to regulate the converter output voltage directly. In recent years, a few papers have been reported in continuous and discontinuous conduction modes (CCM and DCM) operations for indirect control of buck/boost converters [7–۱۵]. In [7], an indirect controller is developed for isolated flyback DC–DC buck/boost converters with DCM operation, using peak-current current-mode control. In [7], the proposed control approach is based on small-signal modelling of the converter system. It is well known that such a linear analysis is not able to maintain converter stability and robustness in different operating-points. In [8], a specific linearised technique around the equilibrium point is utilised to approximate whole non-linear system of the DC–DC boost converter. A simple analogue circuit is designed to implement the non-linear controller. One may note that by this method the stability of the whole actual system cannot be assured. In addition, DCM operation of the converter has not been investigated in [8]. In [9], an estimative current-mode control technique is reported for DC–DC converters and applied to a boost converter which operates in DCM. The principal idea of the proposed control scheme is to obtain samples of the required signals and estimate the required switch-on time www.ietdl.org 732 IET Power Electron., 2013, Vol. 6, Iss. 4, pp. 732–۷۴۱ & The Institution of Engineering and Technology 2013 doi: 10.1049/iet-pel.2012.0198 Downloaded from http://www.elearnica.ir using steady-state analysis of the converter. This controller has a fast dynamic response and can be implemented easily by digital processors. The major drawback of the current controller described in [9] is that for DCM operation, the converter duty cycle is estimated based on steady-state analysis. Also, the exact value of the inductor is needed to calculate the on-time of the converter switch. Furthermore, in [9] it is necessary to measure the input voltage of the converter that will increase converter implementation cost. Sliding-mode (SM) control is well-known for good stability and regulation properties in a wide range of operating conditions. It is also deemed to be a better candidate than other non-linear controllers for its relative ease of implementation [16]. In particular, the fixed frequency PWM-based SM controllers, which amplify control signals obtained from SM control technique, are found to be suited for practical implementation in power converters [17]. A fixed frequency PWM-based SM controller is reported in [10] for buck, boost and buck/boost DC–DC converters, which is applicable to both CCM and DCM operations. The method described in [10] has been supported only by computer simulation results. Sliding-mode controller of [10] is in fact an SM following controller. Therefore it is not obtained based on a Lyapunov function; as a result it cannot be robust against load changes, input voltage variations and converter parameter uncertainties. In [10], it has been shown that when the load changes, a minimum steady-state error still exists in regulated output voltage. The main drawback of the SM method described in [10] is that it is applicable only for DCM operation and the converter duty cycle is obtained based on steady-state analysis of the converter. In addition, a high amount of SM chattering is seen in converter output voltage. In [11], a digital SM current control of the DC–DC boost converter is reported which avoids continuous high frequency sampling of the controlled variables. In [11], a PI controller is used to regulate converter output voltage. The proposed control method in [11] is applicable only to CCM of operation and in addition, high SM chattering is seen in the converter output voltage waveform. A two-loop microprocessor-based controller has been described in [12] for the DC–DC boost converter in CCM operation. The purpose of the inner loop is to control the inductor reference current based on variable band hysteresis current controller. The next loop provides a setpoint to the first control loop according to the output voltage error. Hysteresis current controller of [12] has some major disadvantages such as variable switching frequency, which makes converter implementation difficult. One may note that variable band hysteresis described in [12] is not able to solve this problem completely. Also, it cannot be applied in DCM operation. A non-linear control strategy is described in [13] based on input–output feedback linearisation to solve the non-linearity and unstable zero-dynamics problems of the DC–DC boost converter operating in CCM. This non-linear controller requires an exact model of the converter. The controller reported in [13] is not robust against load changes, input voltage variations and parameter uncertainties. It can be said that the developed controller described in [13] is similar to a non-adaptive version of the backstepping controller proposed in [18]. Note that the DCM operation of the DC–DC boost converter has not been considered in [13, 18]. An adaptive backstepping control approach has been developed in [14] in order to control the DC–DC boost converter in CCM. In [14], it is assumed that the load resistance is uncertain and its value is estimated based on a suitable Lyapunov function. Also, a backstepping control of the DC–DC boost converter in the presence of coil magnetic saturation has been reported in [15]. In [14, 15], indirect output voltage regulation is accomplished through the regulation of inductor reference current, considering steady-state analysis of the converter. The methods described in [14, 15] have been supported only by computer simulation results. Also, these approaches are not robust and stable with reference to converter parameter uncertainties and input voltage variations. In addition, these proposed methods are only applicable for CCM operation of the converter. Moreover, the output voltage of the converter is controlled indirectly based on steady-state analysis with no closed-loop voltage control. For this reason, some steady-state error in converter output voltage is mandatory. In [19], a multi-duty ratio modulation has been described for switching DC–DC buck converters. This technique achieves converter output voltage regulation by generating a control pulse train that is made up of control pulses with different duty ratios. This controller is based on steady-state analysis of the DC–DC buck converter in CCM and DCM operations. As a result it cannot guarantee controller stability and robustness against load disturbances, input voltage variations as well as with reference to converter parameter uncertainties. In [19], minimum and maximum duty ratios are assumed for converter CCM and DCM operations, which are obtained based on steady-state analysis of the converter. Note that during a load disturbance, the duty ratio of the converter is not predictable especially in DCM operation. In [20], a fixed switching frequency robust controller has been developed for parallel DC–DC buck converters by combining the concepts of integral-variable structure and multiple-sliding surface control. The multi-surface SM controller of [20] is designed in two parts: the first controller is outside the boundary layer and the second controller is inside the boundary layer. For the first one, a smooth hyper surface is defined which is based on some assumptions that may not be valid in practice. The gains of each sliding surface are obtained by trial and error method. Although it has been said that the stability of the controller can be proved by Floquet theory or Lyapunov method, it has not been shown in the paper. In addition, in [20], although it is mentioned that the design of the SM controller is not based on the converter state averaged models, for designing the SM controller inside the boundary, the state-averaged model of the converter has been used. Moreover, in [20], the effectiveness of the proposed controller has been verified only by simulation results. Furthermore, the capability of the converter has not been investigated for DCM operation. Note that the proposed controller in [20] generates a high amount of SM chattering. In [21], a conventional PI and an SM double-loop controller have been proposed for a buck/boost converter with wide range of load resistance and reference voltage. The controller of [21] has been verified only by computer simulation and is not valid for DCM operation of the converter. www.ietdl.org IET Power Electron., 2013, Vol. 6, Iss. 4, pp. 732–۷۴۱ ۷۳۳ doi: 10.1049/iet-pel.2012.0198 & The Institution of Engineering and Technology 2013 Simulation results presented in [21], show that the buck/ boost converter system is robust and stable against load disturbance and input voltage variations. In [21], the boundary width of the output voltage in sliding mode is found to be dependent on the circuit and control parameters. It means that for some uncertain parameters of the converter circuit, the SM boundary width becomes uncertain. As a result, the closed-loop system may not be stable. From the simulation results shown in [21], it can be seen that the converter dynamic response is not fast.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
|
|
عنوان فارسی مقاله: | تنظیم ولتاژ انرژی خروجی غیر مستقیم عامل تبدیل گر تقویت کننده DC-DC در حالت های هدایت پیوسته و ناپیوسته با استفاده از روش درجه ی سطح آزاد انطباقی |
عنوان انگلیسی مقاله: | Indirect output voltage regulation of DC–DC buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach |