این مقاله انگلیسی ISI در نشریه الزویر در 14 صفحه در سال 2022 منتشر شده و ترجمه آن 37 صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
یک سیستم تشخیص نفوذ توزیع شده برای شناسایی حملات DDoS در شبکه اینترنت اشیا با بلاک چین |
عنوان انگلیسی مقاله: |
A distributed intrusion detection system to detect DDoS attacks in blockchain-enabled IoT network |
مشخصات مقاله انگلیسی | |
فرمت مقاله انگلیسی | pdf و ورد تایپ شده با قابلیت ویرایش |
سال انتشار | 2022 |
تعداد صفحات مقاله انگلیسی | 14 صفحه با فرمت pdf |
نوع مقاله | ISI |
نوع نگارش | مقاله پژوهشی (Research Article) |
نوع ارائه مقاله | ژورنال |
رشته های مرتبط با این مقاله | مهندسی کامپیوتر – مهندسی فناوری اطلاعات |
گرایش های مرتبط با این مقاله | امنیت اطلاعات – رایانش ابری – اینترنت و شبکه های گسترده – شبکه های کامپیوتری – مهندسی الگوریتم ها و محاسبات |
چاپ شده در مجله (ژورنال) | Journal of Parallel and Distributed Computing |
کلمات کلیدی | زنجیره ی بلوکی – حمله ی دیداس – رایانش در مه – اینترنت اشیا (IoT) – سیستم تشخیص تهاجم – استخر استخراج |
کلمات کلیدی انگلیسی | Blockchain – DDoS attacks – Fog computing – Internet of things (IoT) – Intrusion detection system – Mining pool |
نمایه (index) | scopus – master journals – JCR |
نویسندگان | Randhir Kumar – Prabhat Kumar – Rakesh Tripathi – Govind P. Gupta – Sahil Garg |
شناسه شاپا یا ISSN | 0743-7315 |
شناسه دیجیتال – doi | https://doi.org/10.1016/j.jpdc.2022.01.030 |
ایمپکت فاکتور(IF) مجله | 5.271 در سال 2021 |
شاخص H_index مجله | 92 در سال 2022 |
شاخص SJR مجله | 1.289 در سال 2021 |
شاخص Q یا Quartile (چارک) | Q1 در سال 2021 |
بیس | است ✓ |
مدل مفهومی | دارد ✓ |
پرسشنامه | ندارد ☓ |
متغیر | ندارد ☓ |
فرضیه | ندارد ☓ |
رفرنس | دارای رفرنس در داخل متن و انتهای مقاله ✓ |
کد محصول | 13281 |
لینک مقاله در سایت مرجع | لینک این مقاله در سایت Elsevier |
نشریه | الزویر – Elsevier |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
فرمت ترجمه مقاله | pdf و ورد تایپ شده با قابلیت ویرایش |
وضعیت ترجمه | انجام شده و آماده دانلود |
کیفیت ترجمه | ویژه – طلایی ⭐️⭐️⭐️ |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 37 (2 صفحه رفرنس انگلیسی) صفحه با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه شده است ✓ |
ترجمه متون داخل جداول | ترجمه شده است ✓ |
ترجمه ضمیمه | ندارد ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
درج فرمولها و محاسبات در فایل ترجمه | تایپ شده است ✓ |
منابع داخل متن | به صورت عدد درج شده است ✓ |
منابع انتهای متن | به صورت انگلیسی درج شده است ✓ |
فهرست مطالب |
چکیده 1 مقدمه 3 مدل ارائه شده ی ما 4 نتایج تجربی و بحث 5 نتیجه گیری بیانیه ی مشارکت نویسندگی اعلامیه ی منافع رقابتی تصدیق منابع |
بخشی از ترجمه |
چکیده اینترنت اشیا به عنوان تکنولوژی جدیدی برای توسعه ی بسیاری از برنامه های کاربردی مورد نیاز ، ظاهر شده است. اگرچه، این برنامه های کاربردی هنوز بر روی معماری ذخیره سازی متمرکز اجرا شده و چالش های کلیدی زیادی از جمله حریم خصوصی، امنیت و نقطه ی آسیب پذیری مرکزی را دارا هستند. اخیرا، فناوری زنجیره های بلوکی به عنوان ستون فقراتی برای توسعه ی برنامه های کاربردی بر پایه ی اینترنت اشیا پدیدار شده است. زنجیره های بلوکی می توانند به منظور حل مشکلات حریم خصوصی، امنیت و نقطه ی آسیب پذیری مرکزی ( ارتباط دهنده ی شخص ثالث) برنامه های کاربردی اینترنت اشیا مورد استفاده قرار گیرند. یکپارچه سازی زنجیره های بلوکی با اینترنت اشیا می تواند برای اشخاص و جامعه سودمند باشد. هرچند، تهاجم نقض سرویس توزیع شده (DDoS) بر استخر استخراج در 2017، خط گسله ای اساسی در میان شبکه ی اینترنت اشیای دارای زنجیره ی بلوکی را نمایان کرد. علاوه بر این، این برنامه اطلاعات بسیار زیادی را تولید می کند. یادگیری ماشینی (ML) به دلیل ارائه ی استقلال کامل در آنالیز داده های بزرگ و قابلیت تصمیم گیری، به عنوان ابزاری تحلیلی استفاده می شود. بنابراین، به منظور پرداختن به چالش هایی که پیشتر ذکر شد، این پژوهش سیستم تشخیص نفوذ توزیع شده ی (IDS) جدیدی با به کارگیری رایانش در مه برای شناسایی تهاجم های DDoS در مقابل استخر استخراج در شبکه ی IoT دارای زنجیره ی بلوکی را ارائه می دهد. عملکرد توسط آموزش الگوریتم جنگل تصادفی (RF) و یک سیستم بهینه شده ی تقویت درخت گرادیان (XGBoost) بر گره های محاسبات مه توزیع شده، مورد سنجش قرار می گیرد. سودمندی مدل ارائه شده در ارزیابی با استفاده از مجموعه ای حقیقی از داده های مبتنی بر IoT، به عبارت دیگر BoT-IoT که شامل تهاجم های اخیر یافت شده در شبکه ی IoT دارای زنجیره ی بلوکی است. نتایج بیان می کنند که XGBoost برای تشخیص حملات باینری و الگوریتم جنگل تصادفی برای شناسایی حملات چندگانه عملکرد بهتری دارند. به طور کلی، در مورد گره های محاسباتی مه توزیع شده، RF نسبت به XGBoost زمان کمتری را برای آموزش و آزمایش به خود اختصاص می دهد.
انگیزش
دستاورد |