دانلود ترجمه مقاله تاثیر تخصیص عناوین شغلی سطح مدیر به عوامل مبتنی بر AI بر نتایج بازاریابی (ساینس دایرکت – الزویر 2022) (ترجمه ویژه – طلایی ⭐️⭐️⭐️)

 

 

این مقاله انگلیسی ISI در نشریه الزویر در 13 صفحه در سال 2022 منتشر شده و ترجمه آن 38 صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

اجازه دهید شما را به مدیر مبتنی بر هوش مصنوعی خود منتقل کنم: تاثیر تخصیص عناوین شغلی در سطح مدیر به عوامل مبتنی بر هوش مصنوعی (AI) بر نتایج بازاریابی

عنوان انگلیسی مقاله:

Let me transfer you to our AI-based manager: Impact of manager-level job titles assigned to AI-based agents on marketing outcomes

 

مشخصات مقاله انگلیسی 
فرمت مقاله انگلیسی pdf و ورد تایپ شده با قابلیت ویرایش
سال انتشار 2022
تعداد صفحات مقاله انگلیسی 38 صفحه با فرمت pdf
نوع مقاله ISI
نوع نگارش مقاله پژوهشی (Research Article)
نوع ارائه مقاله ژورنال
رشته های مرتبط با این مقاله مدیریتمهندسی کامپیوتر
گرایش های مرتبط با این مقاله هوش مصنوعیبازاریابیمدیریت بازرگانیمدیریت کسب و کار
چاپ شده در مجله (ژورنال) Journal of Business Research
کلمات کلیدی هوش مصنوعی (AI) – پردازش زبان طبیعی (NLP) – ربات پاسخگو – نماینده مشتری – مدیر مشتری – قضاوت اکتشافی – پیامدهای بازاریابی AI محور
کلمات کلیدی انگلیسی Artificial intelligence (AI) – Natural Language Processing (NLP) – Chatbot – Customer representative – Customer manager – Heuristic judgment – AI-driven marketing outcomes
نمایه (index) scopus – master journals – JCR
نویسندگان Yongwoog “Andy” Jeon
شناسه شاپا یا ISSN 0148-2963
شناسه دیجیتال – doi https://doi.org/10.1016/j.jbusres.2022.03.028
ایمپکت فاکتور(IF) مجله 11.063 در سال 2021
شاخص H_index مجله 217 در سال 2022
شاخص SJR مجله 2.316 در سال 2021
شاخص Q یا Quartile (چارک) Q1 در سال 2021
بیس است 
مدل مفهومی ندارد 
پرسشنامه ندارد 
متغیر ندارد 
فرضیه دارد 
رفرنس دارای رفرنس در داخل متن و انتهای مقاله
کد محصول 12880
لینک مقاله در سایت مرجع لینک این مقاله در سایت Elsevier
نشریه الزویر – Elsevier

 

مشخصات و وضعیت ترجمه فارسی این مقاله 
فرمت ترجمه مقاله pdf و ورد تایپ شده با قابلیت ویرایش
وضعیت ترجمه انجام شده و آماده دانلود
کیفیت ترجمه ویژه – طلایی ⭐️⭐️⭐️
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  38 (3 صفحه رفرنس انگلیسی) صفحه با فونت 14 B Nazanin
ترجمه عناوین تصاویر و جداول ترجمه شده است 
ترجمه متون داخل تصاویر ترجمه شده است 
ترجمه متون داخل جداول ترجمه شده است 
ترجمه ضمیمه دارد و ترجمه شده است
درج تصاویر در فایل ترجمه درج شده است  
درج جداول در فایل ترجمه درج شده است  
درج فرمولها و محاسبات در فایل ترجمه تایپ شده است
منابع داخل متن ترجمه شده است 
منابع انتهای متن به صورت انگلیسی درج شده است

 

فهرست مطالب

چکیده
1. مقدمه
2. پیشینه نظری و تدوین فرضیه ها
3. مروری بر مطالعات تجربی
4. مطالعه 1
5. مطالعه 2
6. مطالعه 3
6.1. روش ها
7. بحث کلی
8. نتیجه گیری
ضمیمه
منابع

 

بخشی از ترجمه

چکیده

     این مقاله به بررسی این موضوع می پردازد که تا چه اندازه، عناوین شغلی اختصاص داده شده به عامل های AI می تواند بر ادراک مشتری از این عامل ها و در نهایت پیامدهای بازاریابی آنها مانند رضایت مشتری، نگرش نسبت به برند و نیت خرید محصولات پیشنهادی توسط AI تاثیر بگذارد. همچنین، این مطالعه به بررسی این موضوع می پردازد که چگونه مشتریان این عامل AI را به صورت مدیری درک می کنند که با نماینده یک فرد یا AI کار می کند. در میان این آزمایش ها (استفاده از یک سناریو و یا ترکیبی از یک سناریو و ربات پاسخگو واقعی AI)، مطالعه نشان می دهد که مشتریان، مدیر AI را از نظر محبوبیت، دانش مداری و قابل اعتماد بودن، مثبت تر از نماینده AI و مدیر انسانی می دانند. مشتریان از مدیر AI، زمانی که از نماینده AI به مدیرAI انتقال داده می شوند، نسبت به زمانی که از یک نماینده انسانی انتقال داده می شوند، تصور مثبت تری دارند. علاوه بر این، اختصاص عناوین شغلی به عامل های AI پیامدهای عمیق مطلوبی بر رضایت مشتری، نگرش نسبت به برند و نیات مشتریان به خرید محصولات پیشنهاد شده طی گفتگو با مدیر AI دارد.

 

پیشینه نظری و تدوین فرضیه ها
محبوبیت درک شده و پیامدهای بازاریابی

     علیرغم استفاده روزافزون از عامل های هوش مصنوعی در خدمات مشتریان، مشتریان ترجیح خواهد داد تا با عوامل انسانی صحبت کنند، زیرا تصور می کنند که عوامل هوش مصنوعی، محبوبیت کمتری دارند(Userlike، 2020). این مشتریان، عامل های انسانی را بیشتر از عامل های هوش مصنوعی دوست دارند، زیرا بر این باورند که عامل های هوش مصنوعی تنها ماشین هایی هستند که پیشرفت کافی نداشته اند تا به سوالات پیشرفته پاسخ دهند یا فاقد مهارت های ارتباطی یا اجتماعی در مدیریت تقاضاهای مشتری هستند(Press، 2019). در نتیجه، عامل هوش مصنوعی که جذابیت کمتری دارد، می تواند تاثیر مخربی بر بازده سرمایه گذاری برای پیاده سازی های هوش مصنوعی در خدمات مشتریان داشته باشد، به ویژه با توجه به اهمیت مفهوم محبوبیت در رضایت مشتری، که بدین صورت تعریف می شود، به چه میزان، فرد به طور بالقوه مطلوب و خوب شناخته یا درک می شود(بامکین، مالز-کلر و میلر، 2018؛ تنی، ترکیمر و آلتامنز، 2009). با توجه به ماهیت ذهنی تماس میان فردی بین مشتریان و کارکنان خط مقدم(پالز و هارتمن، 2017)، ادراک محبوب بودن می تواند بر رضایت مشتری از تجارب خدمات مشتریان تاثیر بگذارد. به طور خاص، کارکنان محبوب، نسبت به کارکنانی که قابلیت های مشابه دارند، اما محبوب نیستند، منجر به رضایت بیشتر مشتری می شوند(جایانتی و ویپل، 2008). گرچه شواهد زیادی نشان می دهند که محبوبیت کارکنان ارتباط مثبت با رضایت دارد، تفسیر نظری برای سوال زیر وجود ندارد: چرا یک فرد محبوب، نسبت به فرد دارای محبوبیت کمتر، منجر به رضایت بیشتر مشتری می شود؟

 

     در پاسخ، تاثیر محبوبیت کارکنان بر رضایت مشتری را می توان با مدل قضاوت اکتشافی توضیح داد(کانامن، 2011). بر اساس مدل سوگیری شناختی، یک فرد به طور خودکار بر اساس نشانه های ذهنی یا میانبرهای ذهنی، ادراکی از فرد ایجاد می کتد تا به سرعت قضاوت کند که آن فرد کیست(چیکن و ماهسوارن، کانمان، 2011). افراد ممکن است ایجاد یا تعدیل برداشت های اولیه از دیگران را با جستجوی دقیق، توجه یا نقد و بررسی اطلاعات کمتر چشمگیر اما مهم تر اطلاعات یا نشانه های نظامند؛ به تاخیر بیاندازند(مانند کیفیت واقعی مکالمه) که برای ارزیابی فرد، تنها زمانی که به انجام آن کار برانگیخته می شوند، اهمیت دارد. در زمینه خدمات مشتریان، هنگام قضاوت درباره سطح رضایت فرد از کارکنان خدمات مشتریان، مشتریان ممکن است از محبوبیت کارکنان به عنوان یک نشانه اکتشافی استفاده کنند که بر اساس آن، آنها رضایت از تعامل با کارکنان خدمات مشتریان را ارزیابی می کنند(داگر و همکاران، 2013). یعنی، اولین اطلاعات درباره یک کارمند، حتی قبل از تماس میان فردی واقعی(مانند مکالمه) بهتر به خاطر سپرده می شود و تاثیر بیشتری بر نظرسنجی مشتری دارد که مبتنی بر امتیارات پس نگرانه است(فیسک و تیلور، 1991).

 

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا