دانلود ترجمه مقاله آنکولوژی ریاضی کسری (ساینس دایرکت – الزویر ۲۰۲۱) (ترجمه ویژه – طلایی ⭐️⭐️⭐️)

 

 

این مقاله انگلیسی ISI در نشریه الزویر در ۱۰ صفحه در سال ۲۰۲۱ منتشر شده و ترجمه آن ۳۵ صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

آنکولوژی ریاضی کسری: امکان استفاده از حساب دیفرانسیل مرتبه غیرصحیح در مدل های میان رشته ای

عنوان انگلیسی مقاله:

Fractional Mathematical Oncology: On the potential of non-integer order calculus applied to interdisciplinary models

 

 

مشخصات مقاله انگلیسی 
فرمت مقاله انگلیسی pdf
سال انتشار ۲۰۲۱
تعداد صفحات مقاله انگلیسی ۱۰ صفحه با فرمت pdf
نوع مقاله ISI
نوع نگارش مقاله پژوهشی (Research Article)
نوع ارائه مقاله ژورنال
رشته های مرتبط با این مقاله ریاضی، پزشکی، زیست شناسی
گرایش های مرتبط با این مقاله محاسبات نرم، آنالیز عددی، ایمنی شناسی پزشکی، خون و آنکولوژی، بیوانفورماتیک
چاپ شده در مجله (ژورنال) سیستم های زیستی – BioSystems
کلمات کلیدی حساب دیفرانسیل کسری، زیست شناسی ریاضیاتی، سرطان، مدل های بر پایه فیزیک، مدل های هیبرید، مرور
کلمات کلیدی انگلیسی Fractional calculus – Mathematical biology – Cancer – Physics-based models – Hybrid models – Review
ارائه شده از دانشگاه گروه مهندسی سیستم های زیستی، دانشگاه سائوپائولو، پردیس پیراسونگا، برزیل
نمایه (index) scopus – master journals – JCR – MedLine
نویسندگان Carlos A. Valentim – José A. Rabi – Sergio A. David
شناسه شاپا یا ISSN ۰۳۰۳-۲۶۴۷
شناسه دیجیتال – doi https://doi.org/10.1016/j.biosystems.2021.104377
ایمپکت فاکتور(IF) مجله ۲٫۰۶۴ در سال ۲۰۲۰
شاخص H_index مجله ۷۴ در سال ۲۰۲۱
شاخص SJR مجله ۰٫۴۸۲ در سال ۲۰۲۰
شاخص Q یا Quartile (چارک) Q3 در سال ۲۰۲۰
بیس نیست
مدل مفهومی ندارد 
پرسشنامه ندارد 
متغیر ندارد 
فرضیه ندارد 
رفرنس دارای رفرنس در داخل متن و انتهای مقاله
کد محصول ۱۱۹۵۶
لینک مقاله در سایت مرجع لینک این مقاله در سایت Elsevier
نشریه الزویر – Elsevier

 

مشخصات و وضعیت ترجمه فارسی این مقاله 
فرمت ترجمه مقاله pdf و ورد تایپ شده با قابلیت ویرایش
وضعیت ترجمه انجام شده و آماده دانلود
کیفیت ترجمه ویژه – طلایی ⭐️⭐️⭐️
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  ۳۵ (۸ صفحه رفرنس انگلیسی) صفحه با فونت ۱۴ B Nazanin
ترجمه عناوین تصاویر و جداول ترجمه شده است 
ترجمه متون داخل تصاویر ترجمه شده است 
ترجمه متون داخل جداول ندارد 
ترجمه ضمیمه ندارد 
ترجمه پاورقی ندارد 
درج تصاویر در فایل ترجمه درج شده است  
درج جداول در فایل ترجمه ندارد 
درج فرمولها و محاسبات در فایل ترجمه تایپ شده است
منابع داخل متن ترجمه شده است 
منابع انتهای متن به صورت انگلیسی درج شده است

 

فهرست مطالب

چکیده

۱٫ مقدمه

۲٫ مقدمه ای بر تومورشناسی ریاضیاتی

۳٫ مدل های قطعی و پیوسته

۴٫ مدل های تصادفی و برپایه سلول: رشد تومور تحت مدل های گسسته

۵٫ تومورشناسی بر پایه ریاضیات کسری

۵٫۱٫ پایه تئوری حساب دیفرانسیل کسری

۵٫۲- مدل های کسری در ارتباط با سرطان

۶٫ مدل های کسری هیبریدی نوین

۷٫ نکات پایانی

اعلان تعارض منافع

تقدیر و تشکر

مراجع

 

بخشی از ترجمه

چکیده

 تومورشناسی ریاضیاتی به بررسی پدیده های در ارتباط با سرطان از طریق مدل های ریاضی فراگیر می پردازد. از این رو رویکردهای میان رشته ای شامل مفاهیم گوناگون از زیست شناسی تا علوم مواد، موجب درکی عمیق تر از سیستم های بیولوژیکی وابسته به بیماری می گردد. در این راستا حساب دیفرانسیل کسری (منسوب به مراتب غیرصحیح) شاخه ای از آنالیز ریاضی می باشد که به کمک ابزارهای آن می توان پدیده های پیچیده در مقیاس های متفاوت زمانی و مکانی را توصیف نمود. مدل های مرتبه کسری امکان توصیف و درک بهتر جزئیات تومورشناسی و عوامل بالقوه موثر در حوزه های تصمیم گیری مانند رشد تومور، تکنیک های تشخیص اولیه و روش های درمانی اختصاصی را فراهم می آورد. تحقیق حاضر با دنبال کردن یک دیدگاه پدیدارشناختی (مانند روش های مکانیکی) به بررسی جنبه های گوناگون تومورشناسی بر پایه ریاضیات کسری پرداخته و به مرور و بحث دستاوردهای جدید این حوزه با توجه به کاربردهای آتی آن ها می پردازد. 

 

۱٫ مقدمه

سرطان شامل گروهی از بیماری ها بوده که از جهش غیرنرمال سلول ها نشات گرفته و امکان ظهور آن در تمامی ارگان ها و بافت های بدن وجود دارد. این بیماری دومین علت مرگ و میر در جهان بوده و نرخ زنده ماندن در این بیماری تا حد زیادی به تشخیص به موقع و کیفیت درمان بستگی دارد (سازمان بهداشت جهانی، ۲۰۲۰). حوزه های تومورشناسی آزمایشگاهی، تکنیک های شامل زیست شناسی مولکولی و به تازگی علوم ژنتیک بیشترین پروژه های تحقیقاتی در این موضوع را شامل شده و موجب افزایش دانش پیرامون مشخصه یابی بدخیمی تومور، تشخیص و درمان بیماری می شوند (گاتنبای  و مائینی ، ۲۰۰۳). استفاده از فیزیک و ریاضی در موضوعات مربوط به سرطان در چند دهه گذشته افزایش یافته و موجب پیدایش حوزه تحقیقی جدیدی شده است (بیرن ، ۲۰۱۰؛ راکن  و اسکات ، ۲۰۱۹).

 

۷٫ نکات پایانی

 برخی ابزارهای ریاضیاتی هم چنان در حال پیدا کردن مسیر خود در حوزه زیست شناسی نظری بوده و حساب دیفرانسیل کسری (به عنوان نمونه مرتبه غیرصحیح) نیز یکی از این موارد می باشد که جنبه های فلسفی و تاریخی آن توجهات زیادی را به خود جلب کرده است. کاربرد حساب دیفرانسیل کسری، همان طور که در این مرور مورد بحث قرار گرفت، به عنوان یک رویکرد قوی و استراتژیک مدل سازی بوده که به فرصت ها و چالش های احتمالی موجود در تومورشناسی ریاضیاتی می پردازد. تومورشناسی بر پایه ریاضیات کسری در کنار دارا بودن فواید شناخته شده تست یا بازتولید مربوط به سناریوهای سیلیکو (که در آزمایش های متناظر بی فایده و یا حتی غیرممکن می باشند)، توانایی کار کردن آسان در مقیاس های ناهمگن، هم چنین بررسی آثار حافظه و دوره های نهفتگی مربوط به شروع و رشد تومور را دارند.

 

بخشی از مقاله انگلیسی

Abstract

Mathematical Oncology investigates cancer-related phenomena through mathematical models as comprehensive as possible. Accordingly, an interdisciplinary approach involving concepts from biology to materials science can provide a deeper understanding of biological systems pertaining the disease. In this context, fractional calculus (also referred to as non-integer order) is a branch in mathematical analysis whose tools can describe complex phenomena comprising different time and space scales. Fractional-order models may allow a better description and understanding of oncological particularities, potentially contributing to decision-making in areas of interest such as tumor evolution, early diagnosis techniques and personalized treatment therapies. By following a phenomenological (i.e. mechanistic) approach, the present study surveys and explores different aspects of Fractional Mathematical Oncology, reviewing and discussing recent developments in view of their prospective applications.

 

۱٫ Introduction

Cancer embodies a group of diseases that emerge from abnormally mutated cells and can appear in almost any body organ or tissue. It is the second leading cause of death worldwide and survival rates are profoundly related to timely access to quality diagnosis and treatment (World Health Organization, 2020). Experimental oncology and techniques involving molecular biology and, more recently, genetics have dominated most research projects on the subject, increasing the knowledge on malignancies characterization, diagnostic and treatment (Gatenby and Maini, 2003). In the last few decades, physics and mathematics have been increasingly applied to cancer-related problems, thus giving rise to a new research area (Byrne, 2010; Rockne and Scott, 2019).

 

۷٫ Concluding remarks

There are tools in Mathematics still waiting to establish their way in Theoretical Biology and such is the case of fractional (i.e. non-integer order) calculus, whose historical and philosophical aspects have attracted growing interest. As addressed and discussed in the present review work, the application of fractional calculus indeed arises as powerful and strategic modeling approach in view of prospective challenges and opportunities in Mathematical Oncology. Besides wellknown advantages of either testing or reproducing different in silico scenarios (which could be impractical or even impossible via corresponding in vitro experimentation), Fractional Mathematical Oncology can straightforwardly deal with heterogeneous scales, memory effects and/or dormancy periods related to tumor onset and development.

 

تصویری از مقاله ترجمه و تایپ شده در نرم افزار ورد

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

آنکولوژی ریاضی کسری: امکان استفاده از حساب دیفرانسیل مرتبه غیرصحیح در مدل های میان رشته ای

عنوان انگلیسی مقاله:

Fractional Mathematical Oncology: On the potential of non-integer order calculus applied to interdisciplinary models

 

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا