دانلود ترجمه مقاله معتبر مدل سازی سیستم استنتاج فازی جهت پیش بینی داده های نمادین (ساینس دایرکت – الزویر۲۰۱۹) (ترجمه ویژه – طلایی ⭐️⭐️⭐️)

elsevier

 

 

این مقاله انگلیسی ISI در نشریه الزویر در ۱۱ صفحه در سال ۲۰۱۹ منتشر شده و ترجمه آن ۳۲ صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

روش مدل سازی سیستم استنتاج فازی جهت پیش بینی داده های نمادین با ارزش بازه ای

عنوان انگلیسی مقاله:

A fuzzy inference system modeling approach for interval-valued symbolic data forecasting

 

 

مشخصات مقاله انگلیسی 
فرمت مقاله انگلیسی pdf و ورد تایپ شده با قابلیت ویرایش
سال انتشار ۲۰۱۹
تعداد صفحات مقاله انگلیسی ۱۱ صفحه با فرمت pdf
نوع مقاله ISI
نوع نگارش مقاله پژوهشی (Research article)
نوع ارائه مقاله ژورنال
رشته های مرتبط با این مقاله مهندسی صنایع
گرایش های مرتبط با این مقاله بهینه سازی سیستم ها، برنامه ریزی و تحلیل سیستم ها، داده کاوی
چاپ شده در مجله (ژورنال) سیستم های دانش بنیان – Knowledge-Based Systems
کلمات کلیدی تجزیه و تحلیل داده های نمادین، داده های با ارزش بازه ای، سیستم های استنتاج فازی، مدل های مبتنی بر قاعده، پیش بینی سری های زمانی
کلمات کلیدی انگلیسی Symbolic data analysis – Interval-valued data – Fuzzy inference systems – Rule-based models – Time series forecasting
ارائه شده از دانشگاه  دانشکده سیاست، اقتصاد و تجارت سائوپائولو، دانشگاه فدرال سائوپائولو، برزیل
نمایه (index) scopus – master journals – JCR
نویسندگان Leandro Maciel – Rosangela Ballini
شناسه شاپا یا ISSN ۰۹۵۰-۷۰۵۱
شناسه دیجیتال – doi https://doi.org/10.1016/j.knosys.2018.10.033
ایمپکت فاکتور(IF) مجله ۹٫۴۲۴ در سال ۲۰۲۰
شاخص H_index مجله ۱۲۱ در سال ۲۰۲۱
شاخص SJR مجله ۱٫۵۸۷ در سال ۲۰۲۰
شاخص Q یا Quartile (چارک) Q1 در سال ۲۰۲۰
بیس نیست
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
فرضیه  ندارد
رفرنس دارای رفرنس در داخل متن و انتهای مقاله
کد محصول ۱۱۹۰۱
لینک مقاله در سایت مرجع لینک این مقاله در سایت Elsevier
نشریه الزویر – Elsevier

 

مشخصات و وضعیت ترجمه فارسی این مقاله 
فرمت ترجمه مقاله pdf و ورد تایپ شده با قابلیت ویرایش
وضعیت ترجمه انجام شده و آماده دانلود
کیفیت ترجمه ویژه – طلایی ⭐️⭐️⭐️
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  ۳۲ (۳ صفحه رفرنس انگلیسی) صفحه با فونت ۱۴ B Nazanin
ترجمه عناوین تصاویر و جداول ترجمه شده است 
ترجمه متون داخل تصاویر ترجمه شده است 
ترجمه متون داخل جداول ترجمه شده است 
ترجمه ضمیمه ندارد
ترجمه پاورقی ترجمه نشده است 
درج تصاویر در فایل ترجمه درج شده است  
درج جداول در فایل ترجمه درج شده است  
درج فرمولها و محاسبات در فایل ترجمه به صورت عکس درج شده است
منابع داخل متن به صورت عدد درج شده است
منابع انتهای متن به صورت انگلیسی درج شده است

 

فهرست مطالب

چکیده
۱ مقدمه
۲ سیستم استنتاج فازی برای داده های با ارزش بازه ای
۲٫۱ داده های با ارزش بازه ای و ITS
۲٫۲ ساختار مدل iFIS
۲٫۳ شناسایی پیشایندهای iFIS
۲٫۴ شناسایی پی‌آیندهای iFIS
۳ آزمایشات محاسباتی
۳٫۱ سری های زمانی مصنوعی با ارزش بازه ای
۴ نتیجه گیری
تقدیر و تشکر
منابع

 

بخشی از ترجمه

چکیده

مقاله حاضر یک رورکد مدلسازی سیستم استنتاج فازی (iFIS) را برای پیش بینی سری های زمانی با ارزش بازه ای پیشنهاد می کند. داده های با ارزش بازه ای به صورت کاملاً طبیعی در بسیاری از وضعیت هایی که در آن ها چنین داده هایی نشان دهنده عدم قطعیت / تغییرپذیری هستند و یا هنگامی که به روش های جامعی برای تخلیص مجموعه داده های بزرگ نیاز است، پدید می آیند. روش مزبور از یک چارچوب مبتنی بر قاعده فازی با پی‌آیند آفین  تشکیل شده که چارچوب خطی (غیرخطی) را فراهم نموده که داده های نمادین با ارزش بازه ای را پردازش می نماید. شناسایی پیشایندهای iFIS از یک الگوریتم خوشه بندی c-means فازی برای داده های با ارزش بازه ای همراه با فواصل تطبیقی استفاده می کند در حالی که پارامترهای پی‌آیند خطی با روش محدوده – مرکز برای برازش مدل رگرسیون خطی با داده های بازه ای نمادین برآورد می شوند. قدرت پیش بینی iFIS، که بر اساس معیارهای صحت و دقت و آزمون های آماری سنجیده می شود، از طریق آزمایشات مونت کارلو و با کمک سری های زمانی نمادین با ارزش بازه ای همراه با پویایی خطی و آشفته و سری های زمانی مالی واقعی با ارزش بازه ای مورد ارزیابی قرار می گیرد. نتایج نشان دهنده عملکرد برتر iFIS در قیاس با مدل های پیش بینی با ارزش بازه ای و با ارزش واحد سنتی همراه با کاهش ۱۹ درصدی در میانگین خطاهای پیش بینی است که تایید می نماید رویکرد پیشنهادی را می توان به عنوان ابزاری امیدبخش برای پیش بینی سری های زمانی بازه ای در نظر گرفت.

۴ نتیجه گیری

توسعه قابل توجه فناوری های گردآوری داده ها به تولید حجم عظیمی از داده ها منجر شده است. از این رو، به منظور استخراج اطلاعات ارزشمند از پایگاه داده های بزرگ به رویکردهای قابلی نیاز می باشد. با نمایش داده ها با متغیرهای با ارزش بازه ای نمادین، تخلیص داده ها، ارائه روش بررسی تغییرپذیری و یا عدم قطعیت ذاتی داده ها را امکان پذیر می نماید. در این زمینه، پیش بینی سری های زمانی بازه ای (ITS) نقش مهم فزاینده ای را در حوزه هایی چون بازارهای مالی، هواشناسی و مدیریت جریان ترافیک ایفا می کنند زیرا در فرآیندهای تصمیم گیری و سیاستگذاری، ابزار مضاعفی برای سازمان ها و دست اندرکاران شمرده می شوند.

 

بخشی از مقاله انگلیسی

Abstract

This paper suggests a fuzzy inference system (iFIS) modeling approach for interval-valued time series forecasting. Interval-valued data arise quite naturally in many situations in which such data represent uncertainty/variability or when comprehensive ways to summarize large data sets are required. The method comprises a fuzzy rule-based framework with affine consequents which provides a (non)linear framework that processes interval-valued symbolic data. The iFIS antecedents identification uses a fuzzy c-means clustering algorithm for interval-valued data with adaptive distances, whereas parameters of the linear consequents are estimated with a center-range methodology to fit a linear regression model to symbolic interval data. iFIS forecasting power, measured by accuracy metrics and statistical tests, was evaluated through Monte Carlo experiments using both synthetic interval-valued time series with linear and chaotic dynamics, and real financial interval-valued time series. The results indicate a superior performance of iFIS compared to traditional alternative single-valued and interval-valued forecasting models by reducing 19% on average the predicting errors, indicating that the suggested approach can be considered as a promising tool for interval time series forecasting.

۴ Conclusion

The significant development of data collection technologies has contributed to the production of huge volumes of data. Therefore, approaches able to extract valuable information from large databases are demanding. When data are represented by symbolic interval-valued variables, it makes it possible to summarize the data and provide a way to account for the variability and/or uncertainty inherent to the data. In this domain, interval time series (ITS) forecasting plays an increasingly important role in areas such as financial markets, meteorology, and traffic flow management since it is seen as an additional tool for organizations and practitioners in policy and decision-making processes.

 

تصویری از مقاله ترجمه و تایپ شده در نرم افزار ورد

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

روش مدل سازی سیستم استنتاج فازی جهت پیش بینی داده های نمادین با ارزش بازه ای

عنوان انگلیسی مقاله:

A fuzzy inference system modeling approach for interval-valued symbolic data forecasting

 

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *