دانلود ترجمه مقاله تجزیه و تحلیل عددی اثرات میدان مغناطیسی بر روی ارتقای انتقال حرارت در سیال مغناطیسی (ساینس دایرکت – الزویر ۲۰۱۹) (ترجمه ویژه – طلایی ⭐️⭐️⭐️)
این مقاله انگلیسی ISI در نشریه الزویر در ۱۰ صفحه در سال ۲۰۱۹ منتشر شده و ترجمه آن ۲۲ صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
تجزیه و تحلیل عددی اثرات میدان مغناطیسی بر روی ارتقای انتقال حرارت در سیال مغناطیسی برای یک جمع کننده خورشیدی به صورت سهمی شکل |
عنوان انگلیسی مقاله: |
Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector |
|
مشخصات مقاله انگلیسی | |
فرمت مقاله انگلیسی | |
سال انتشار | ۲۰۱۹ |
تعداد صفحات مقاله انگلیسی | ۱۰ صفحه با فرمت pdf |
نوع مقاله | ISI |
نوع نگارش | مقاله پژوهشی (Research Article) |
نوع ارائه مقاله | ژورنال |
رشته های مرتبط با این مقاله | مهندسی مکانیک |
گرایش های مرتبط با این مقاله | مکانیک سیالات، تبدیل انرژی |
چاپ شده در مجله (ژورنال) | انرژی تجدید پذیر – Renewable Energy |
کلمات کلیدی | جمع کننده صفحه سهمی شکل، نیروگاه توان گرمایی خورشیدی، نانوذرات ، ضریب انتقال گرمایی، شبیه سازی CFD |
کلمات کلیدی انگلیسی | Parabolic trough collector – Solar thermal power plant – Fe3O4 nanoparticles – Heat transfer coefficient – CFD simulation |
ارائه شده از دانشگاه | گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه آلتو، فنلاند |
نمایه (index) | scopus – master journals – JCR |
نویسندگان | Ali Khosravi – Mohammad Malekan – Mamdouh E.H.Assadc |
شناسه شاپا یا ISSN | ۰۹۶۰-۱۴۸۱ |
شناسه دیجیتال – doi | https://doi.org/10.1016/j.renene.2018.11.015 |
ایمپکت فاکتور(IF) مجله | ۷٫۳۶۵ در سال ۲۰۱۹ |
شاخص H_index مجله | ۱۷۴ در سال ۲۰۲۰ |
شاخص SJR مجله | ۲٫۰۵۲ در سال ۲۰۱۹ |
شاخص Q یا Quartile (چارک) | Q1 در سال ۲۰۱۹ |
بیس | نیست ☓ |
مدل مفهومی | ندارد ☓ |
پرسشنامه | ندارد ☓ |
متغیر | ندارد ☓ |
رفرنس | دارای رفرنس در داخل متن و انتهای مقاله ✓ |
کد محصول | ۱۱۰۰۸ |
لینک مقاله در سایت مرجع | لینک این مقاله در سایت Elsevier |
نشریه | الزویر – Elsevier |
مشخصات و وضعیت ترجمه فارسی این مقاله | |
فرمت ترجمه مقاله | pdf و ورد تایپ شده با قابلیت ویرایش |
وضعیت ترجمه | انجام شده و آماده دانلود |
کیفیت ترجمه | ویژه – طلایی ⭐️⭐️⭐️ |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | ۲۲ (۱ صفحه رفرنس انگلیسی) صفحه با فونت ۱۴ B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
ترجمه ضمیمه | ندارد ☓ |
ترجمه پاورقی | ندارد ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
درج فرمولها و محاسبات در فایل ترجمه | به صورت عکس درج شده است ✓ |
منابع داخل متن | درج نشده است ☓ |
منابع انتهای متن | به صورت انگلیسی درج شده است ✓ |
فهرست مطالب |
چکیده ۱٫ مقدمه ۲٫ تعریف مسئله ۲٫۱ ویژگی های فیزیکی مایع مغناطیسی ۲٫۲ تحلیل انتقال گرمایی ۲٫۳ میدان مغناطیسی و معادله های حاکم ۲٫۴ شرایط مرزی ۳٫ نتایج و مباحث ۳٫۱ ارزیابی اعتبار ۳٫۲ نتایج CFD ۴٫ جمع بندی |
بخشی از ترجمه |
چکیده یک ظرف سهمی شکل به عنوان یک جمع کننده گرمایی خورشیدی تعریف می شود که در یک بعد صاف است و در دو بعد دیگر به صورت یک سهمی، منحنی شکل می باشد که آینه های صاف برروی ان قرار گرفته است . ارتقای کارایی گرمایی این جمع کننده ها یکی از مهم ترین چالش های توسعه و رشد نیروگاه های توان گرمایی خورشیدی می باشد. مایعات مغناطیسی به عنوان یک مایع کاری جدید برای کاربرد های صنعتی ارائه شده اند که این موضوع به دلیل عملکرد گرمایی آن ها می باشد. در این مطالعه، یک انتقال گرمای همرفتی از مایعFe3O4-Therminol66 تحت میدان مغناطیسی (۰-۵۰۰G) با استفاده از دینامیک محاسبه سیالات، ارزیابی شده است. مایع مغناطیسی با کسر های حجمی مختلف ( ۱تا۴% ) و Therminol 66 ( به عنوان مایع اصلی)به عنوان مایعات کاری برای یک جمع کننده خورشیدی سهمی شکل، مورد استفاده قرار گرفته اند. تحلیل های عددی نخست نشان دهنده نتایج نظری می باشند و سپس یک مطالعه دقیق انجام شده است تا بتوان تاثیر سیال مغناطیسی را بر روی پارامتر های مختلف از لوله جمع کننده، کارایی گرمایی و همچنین خروجی دمایی این جمع کننده، نشان داد. به علاوه، افزایش کسر حجمی نانوذرات در مایع اولیه و تراکم میدان مغناطیسی باعث افزایش عملکرد این جمع کننده شد.
۱٫ مقدمه انرژی تجدید پذیر، به عنوان مثال انرژی های بادی و خورشیدی، یکی از امید بخش ترین راه حل ها برای تولید کردن انرژی تمیز برای آینده می باشد زیرا منابع انرژی فعلی ( مانند نفت، زغال سنگ و گازهای طبیعی)، در چند دهه آتی تمام خواهند شد. میزان مصرفانرژی در جهان به صورت پیوسته در حال افزایش می باشد و این موضوع برای تمام محقق ها و دانشمندان نگران کننده می باشد. انرژی خورشیدی به عنوان یک انرژی فراوان، می تواند به صورت گرما و یا برق تبدیل شود. این انرژی، یک منبع مفید برای کاربرد های مختلف می باشد : خشک کننده های خورشیدی، تولید آب گرم به صورت محلی و تولید برق در نیروگاه های انرژی خورشیدی. میزان تولید انرژی خورشیدی بین سال ۲۰۱۲ تا ۲۰۴۰ با افزایش سالانه ۸٫۹% پیش بینی شده است و همین موضوع باعث می شود که این نوع از تولید انرژی، به سریع ترین و پر پیشرفت ترین نوع تولید انرژی در دهه های پیش رو تبدیل شودد.
۴٫ جمع بندی این مطالعه یک مطالعه عددی را مبتنی بر دینامیک محاسباتی سیالات ارائه می کند که با استفاده از نرم افزار ANSYS® FLUENT® انجام شده است که هدف ما، مطالعه کردن تاثیر مایع مغناطیسی و میدان مغناطیسی بر روی عملکرد جمع کننده های خورشیدی سهمی وار می باشد. مایع مغناطیسی Fe3O4-Therminol در این مطالعه با کسر حجمی مختلف به عنوان مایع کاری مورد استفاده قرار گرفته است و Therminol 66 در واقع، مایع پایه می باشد. به علاوه، تحلیل هایی نیز همراه یا بدون میدان مغناطیسی انجام شده است که این میدان توسط یک سیم حامل جریان الکتریکی ایجاد شده است که در نزدیکی لوله جمع کننده قرار دارد. تاثیر میدان مغناطیسی بر روی ضریب انتقال گرمایی همرفتی، کارایی گرمایی و عملکرد جمع کننده نیز به صورت دقیق ارزیابی شده است. نتایج نشان داده است که HTC جمع کننده خورشیدی با استفاده از نانوذرات قرار گرفته در مایع پایه افزایش پیدا می کند. افزایش در کسر حجمی این نانوذرات می تواند باعث افزایش HTC هم بشود. همچنین، ارزیابی های فعلی نشان داده است که استفاده از میدان مغناطیسی باعث افزایش HTC محلی در لوله جمع کننده، دمای خروجی و کارایی گرمایی می شود. بهترین عملکرد نیز برای مایع مغناطیسی با ۴% کسر حجمی به دست آمده است. در نهایت، بهترین عملکرد گرمایی – هیدرولیکی نیز برای مایع مغناطیسی با ۱% کسر حجمی رخ می دهد که افت فشار جریان و ضریب اصطکاک کمترین مقادیر را برای آن دارند که این موضوع مشابه با نتایجی است که در مقالات دیگر به دست آمده است. |
بخشی از مقاله انگلیسی |
Abstract A parabolic trough is defined as a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. Enhancing the thermal efficiency of this collectors is one of the major challenges of developing and growing of parabolic trough solar thermal power plants. Ferrofluids were proposed as a novel working fluid for industrial applications, due to their thermal performances. In this study, the convective heat transfer of Fe3O4-Therminol 66 ferrofluid under magnetic field (0–۵۰۰ G) is evaluated using computational fluid dynamics. The ferrofluid with different volume fraction (1–۴%) and the Therminol 66 (as the base fluid) are considered as the working fluids for a parabolic trough solar collector. Numerical analysis first validated using theoretical results, and then a detailed study is conducted in order to analyze the effect of the magnetic field on different parameters. The result demonstrated that using magnetic field can increase the local heat transfer coefficient of the collector tube, thermal efficiency as well as output temperature of the collector. In addition, increasing the volume fraction of nanoparticle in the base fluid and intensity of magnetic field increased the collector performance.
۱٫ Introduction Renewable energy, for instance solar and wind energy, is one of the most promising solutions to produce clean energy for the future since the conventional energy sources (such as oil, coal and natural gas) will be finished in a few decades [1,2]. World energy consumption is increasing continually and this is worrisome for all researchers and scientists [3]. Solar energy, as an abundant energy source, can either be converted into heat or electricity. It is a useful source of energy for various applications: solar dryers, local hot water production, and electricity production in concentrating solar power plants [4]. Global solar energy production was predicted to reach a rate of 8.9% annually between 2012 and 2040, making it the fastest developing type of energy generation in the forthcoming decades [5].
۴٫ Conclusion Current study presented a numerical study based on computational fluid dynamics incorporated within ANSYS® FLUENT®, in order to study the effects of ferrofluid and magnetic field on the performance of a parabolic trough solar collector. Fe3O4-Therminol 66 ferrofluid with different volume fraction was considered as the working fluid, having the Therminol 66 as the base fluid. In addition, analyses were done with and without presence of a magnetic field which was provided by a current-carrying wire located close to the collector tube. Effect of the magnetic field on the convective heat transfer coefficient, thermal efficiency, and collector performance was investigated in detail. The results have shown that the HTC of solar collector increases by using submerged nanoparticles in the base fluid. Increasing in volume fraction of nanoparticles can increase the HTC as well. Also, current investigations have shown that using magnetic field helps to increase local HTC of the collector tube, output temperature, and thermal efficiency of the collector. The best performance was obtained for ferrofluid with 4 vol% under a magnetic field of 500 G, which proves effectiveness of both ferrofluid and magnetic field on the collector performance. Finally, the best thermo-hydraulic performance occurs for ferrofluid with 1 vol % in the case of magnetic field absence for which the flow pressure drop and friction factor have the smallest values, similar to the results obtained in the literature. |
تصویری از مقاله ترجمه و تایپ شده در نرم افزار ورد |
دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
تجزیه و تحلیل عددی اثرات میدان مغناطیسی بر روی ارتقای انتقال حرارت در سیال مغناطیسی برای یک جمع کننده خورشیدی به صورت سهمی شکل |
عنوان انگلیسی مقاله: |
Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector |
|