دانلود ترجمه مقاله در مورد دوگانگی و كدهاي چند چرخه ای (Aimsciences ۲۰۱۶) (ترجمه ویژه – طلایی ⭐️⭐️⭐️)

Translation3

 

 

این مقاله انگلیسی ISI در نشریه Aimsciences در ۱۰ صفحه در سال ۲۰۱۶ منتشر شده و ترجمه آن ۱۴ صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

در مورد دوگانگی و كدهاي چند چرخه ای

عنوان انگلیسی مقاله:

On the duality and the direction of polycyclic codes

 

 

مشخصات مقاله انگلیسی 
فرمت مقاله انگلیسی pdf
سال انتشار ۲۰۱۶
تعداد صفحات مقاله انگلیسی ۱۰ صفحه با فرمت pdf
نوع مقاله ISI
نوع ارائه مقاله ژورنال
رشته های مرتبط با این مقاله ریاضی
گرایش های مرتبط با این مقاله ریاضی کاربردی
چاپ شده در مجله (ژورنال) پیشرفت در ریاضیات ارتباطات – Advances in Mathematics of Communications
کلمات کلیدی کدهای خود-پوچساز دودویی، کدهای چرخه ای
کلمات کلیدی انگلیسی Cyclic codes – formally self-dual codes
ارائه شده از دانشگاه Math Dept., King Abdulaziz University, Jeddah, Saudi Arabia
نویسندگان Adel Alahmadi، Steven Dougherty، André Leroy، and Patrick Solé
شناسه دیجیتال – doi https://doi.org/10.3934/amc.2016049
بیس نیست 
مدل مفهومی ندارد 
پرسشنامه ندارد 
متغیر ندارد 
رفرنس دارای رفرنس در داخل متن و انتهای مقاله
کد محصول ۱۰۳۵۷
نشریه Aimsciences

 

مشخصات و وضعیت ترجمه فارسی این مقاله 
فرمت ترجمه مقاله pdf و ورد تایپ شده 
وضعیت ترجمه انجام شده و آماده دانلود
کیفیت ترجمه ویژه – طلایی ⭐️⭐️⭐️
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  ۱۴ صفحه (۱ صفحه رفرنس انگلیسی) با فونت ۱۴ B Nazanin
درج فرمولها و محاسبات در فایل ترجمه  به صورت عکس درج شده است  
منابع داخل متن به صورت عدد درج شده است  
منابع انتهای متن به صورت انگلیسی درج شده است

 

فهرست مطالب

چکیده
۱- پیشگفتار
۲- نمادگذاری و تعاریف
۲-۱ نظریه حلقه
۲-۲- کدهای به صورت رسمی خود-دوگان
۳- دوگانگی
۴- کدهای به طور رسمی خود-دوگان
۵- کدهای چندچرخه‌ای
۶- کدهای متوالی
۷- نتیجه‌گیری و مسائل باز

 

بخشی از ترجمه

چکیده

کدهای چند چرخه‌ای، ایده‌آل‌های در خارج قسمت‌های حلقه‌های چند جمله‌ای توسط یک ایده‌آل اصلی هستند. موارد خاص، کدهای چرخه‌ای و کدهای constacyclic هستند. ارتباط مک‌ویلیامزی بین چنین کدی و ایده‌آل پوچ‌ساز آن به دست می‌آید. خانواده‌ای نامتناهی از کدهای خود-دوگان دودویی که همچنین رسما از نظر کلاسیک نیز خود-دوگان هستند نمایش داده می‌شود. نشان می‌دهیم که کدهای چند-چرخه‌ای راست، کدهای چند چرخه‌ای چپ با بردارهای وابسته (صریح) مختلف بوده و دارای مشخصه موردی هستند که در آن، یک کد برای چند جمله‌ای وابسته یکسان، هم چندچرخه‌ای راست و هم چندچرخه‌ای چپ است. مطالعه مشابهی برای کدهای متوالی انجام می‌شود.

 

۷- نتیجه‌گیری و مسائل باز

نظریه کد پوچساز یک کد چند چرخه‌ای را معرفی کرده‌ایم که مانند دوگان یک کد چرخه‌ای استاندارد در بسیاری از روش‌ها رفتار می‌کند. به عنوان مثال، روابط مک‌ویلیامز را به دست می‌آوریم که شمارنده وزن کد را به شمارنده وزن پوچساز آن ربط می‌دهد. کلاس کدهای پوچساز شایسته توجه بیشتری است. نشان داده‌ایم که کدهای چند چرخه‌ای راست، برای چند جمله‌ای‌های وابسته مختلف چند چرخه‌ای چپ هستند و موردی را مشخصه‌بندی کردیم که آن‌ها مساوی هستند. مطالعه مشابهی را برای کدهای متوالی انجام دادیم. بسط این نتایج به حلقه‌های چندجمله‌ای اریب نیاز به مطالعات بیشتری دارد.

 

بخشی از مقاله انگلیسی

Abstract

Polycyclic codes are ideals in quotients of polynomial rings by a principal ideal. Special cases are cyclic and constacyclic codes. A MacWilliams relation between such a code and its annihilator ideal is derived. An infinite family of binary self-dual codes that are also formally self-dual in the classical sense is exhibited. We show that right polycyclic codes are left polycyclic codes with different (explicit) associate vectors and characterize the case when a code is both left and right polycyclic for the same associate polynomial. A similar study is led for sequential codes.

 

۷- Conclusion and open problems

We have introduced the notion of the annihilator code of a polycyclic code which behaves like the dual of a standard cyclic code in many ways. For example, we derive MacWilliams relations which relate the weight enumerator of the code with the weight enumerator of its annihilator. The class of self annihilator codes deserves more attention. We have shown that right polycyclic codes are left polycyclic for different associate polynomials and characterized the case when they are equal. We conducted a similar study for sequential codes. Extension of these results to skew polynomial rings warrants further study.

 

تصویری از مقاله ترجمه و تایپ شده در نرم افزار ورد

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

در مورد دوگانگی و كدهاي چند چرخه ای

عنوان انگلیسی مقاله:

On the duality and the direction of polycyclic codes

 

 

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد.