دانلود ترجمه مقاله انتخاب جنبه ها برای تشخیص نفوذ با استفاده از NSL-KDD

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

انتخاب جنبه ها برای تشخیص نفوذ با استفاده از NSL-KDD

عنوان انگلیسی مقاله:

Feature Selection for Intrusion Detection using NSL-KDD

 

 

مشخصات مقاله انگلیسی (PDF)
تعداد صفحات مقاله انگلیسی ۴ صفحه با فرمت pdf
نوع مقاله ISI
نوع ارائه مقاله ژورنال
رشته های مرتبط با این مقاله مهندسی کامپیوتر
گرایش های مرتبط با این مقاله امنیت اطلاعات
چاپ شده در مجله (ژورنال) پیشرفت های اخیر در علوم کامپیوتر – Recent Advances in Computer Science
کلمات کلیدی داده کاوی، سیستم تشخیص نفوذ، پیش پردازش، انتخاب ویژگی، کاهش ویژگی، NSL-KDD
کلمات کلیدی انگلیسی Data Mining – Preprocessing – Feature selection – Feature Reduction – Intrusion detection system – NSL-KDD
ارائه شده از دانشگاه گروه مدیریت امنیت اطلاعات، کره
نویسندگان Hee-su Chae، Byung-oh Jo، Sang-Hyun Choi، Twae-kyung Park
بیس نیست 
مدل مفهومی ندارد 
پرسشنامه ندارد 
متغیر ندارد 
رفرنس دارای رفرنس در داخل متن و انتهای مقاله
کد محصول ۹۷۰۱

 

مشخصات و وضعیت ترجمه فارسی این مقاله (Word)
وضعیت ترجمه انجام شده و آماده دانلود در فایل ورد و PDF
کیفیت ترجمه طلایی⭐️
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  ۸ صفحه (شامل ۱ صفحه رفرنس انگلیسی) با فونت ۱۴ B Nazanin
ترجمه عناوین جداول ترجمه شده است  
ترجمه متون داخل جداول ترجمه نشده است 
درج تصاویر در فایل ترجمه درج شده است  
درج جداول در فایل ترجمه درج شده است  
درج فرمولها و محاسبات در فایل ترجمه  به صورت عکس درج شده است  
منابع داخل متن به صورت عدد درج شده است  
منابع انتهای متن به صورت انگلیسی درج شده است

 

فهرست مطالب

چکیده

۱- مقدمه

۲- کارهای مرتبط

۱- ۲- انتخاب ویژگی

۲- ۲- مجموعه داده NSL-KDD

۳- مطالعه آزمایشی

۱- ۳- آمارهای توصیفی NSL-KDD

۲- ۳- روش پیشنهادی

۴- نتایج

۵- نتیجه گیری و کارآتی

منابع

 

بخشی از ترجمه

چکیده

این روزها، به خاطر افزایش میزان استفاده از وسایل هوشمند و اینترنت، ترافیک شبکه رو به افزایش است. تعدادی از مطالعات انجام شده در مورد تشخیص نفوذ بر انتخاب یا کاهش ویژگیها تمرکز کرده اند، زیرا برخی از ویژگیها بی ربط و حشو هستند که فرایند تشخیص را طولانی نموده و عملکرد یک سیستم تشخیص نفوذ (IDS) را پائین می آورند. هدف این مطالعه، شناسایی ویژگیهای ورودی منتخب مهم برای ساخت IDS با قابلیت محاسباتی کارآمد و موثر است. برای این منظور، عملکرد روشهای انتخاب ویژگی استاندارد یعنی CFS (انتخاب ویژگی مبتنی بر همبستگی)، IG (بهره اطلاعاتی)، و GR (نسبت بهره) را ارزیابی می نماییم. در این مقاله، روش جدیدی برای انتخاب ویژگی با استفاده از میانگین کل و هر یک از کلاس ها پیشنهادکرده و برای ارزیابی روش کاهش ویژگی، از یکی از الگوریتم های طبقه بندی کارآمد درخت تصمیم استفاده می نماییم. سپس روش پیشنهادی و روشهای دیگر را باهم مقایسه می کنیم.

 

۵- نتیجه گیری و کارآتی

در این مقاله، روشهایی برای انتخاب ویژگی، با استفاده از AR پیشنهاد کرده و آن را با سه انتخاب کننده ویژگی به نامهای CFS، IG و GR مقایسه کردیم. آزمایش نشان می دهد که در روش انتخاب ویژگی پیشنهادی، بین صحت و مقدار AR همبستگی معکوسی وجود دارد و بالاترین صحت با استفاده از ۲۲ ویژگی ۷۹۴٫ ۹۹ درصد است. صحت روش پیشنهادی بالاتر از صحت داده های کامل است و به اندازه صحت روشهای دیگر بالا است.کار آتی شامل مقایسه زمان محاسبه برای روش پیشنهادی و روشهای دیگر می شود. همچنین، نرخ مثبت حقیقی (TPR) ، نرخ مثبت کاذب (FPR) و صحت هر نوع حمله را محاسبه خواهیم نمود.

 

بخشی از مقاله انگلیسی

Abstract

These days, network traffic is increasing due to the increasing use of smart devices and the Internet. Amount of the intrusion detection studies focused on feature selection or reduction because some of the features are irrelevant and redundant which results lengthy detection process and degrades the performance of an intrusion detection system (IDS). The purpose of this study is to identify important selected input features in building IDS that is computationally efficient and effective. For this we evaluate the performance of standard feature selection methods; CFS(Correlation-based Feature Selection), IG(Information Gain) and GR(Gain Ratio). In this paper, we propose a new feature selection method using feature average of total and each classes. We apply one of the efficient classifier decision tree algorithm for evaluating feature reduction method. We compare between proposed method and other methods.

 

۵- Conclusion and Future Work

In this paper, we have proposed feature selection methods using AR and compared it with three feature selectors CFS, IG, and GR. The experiment shows that between accuracy and AR value is inverse correlation in our feature selection method and the highest accuracy is 99.794% using 22 features. The accuracy of our method is higher than the accuracy of full data and is also as highly as accuracy of other methods. Future work will include a comparison of calculation time for our method and other methods. Also. we will calculate the True Positive Rate(TPR), False Positive Rate(FPR), and accuracy for each attack type.

 

تصویری از مقاله ترجمه و تایپ شده در نرم افزار ورد

 

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

انتخاب جنبه ها برای تشخیص نفوذ با استفاده از NSL-KDD

عنوان انگلیسی مقاله:

Feature Selection for Intrusion Detection using NSL-KDD

 

 

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا