دانلود ترجمه مقاله انتخاب پروژه در مدیریت پرتفولیو پروژه (ساینس دایرکت – الزویر ۲۰۱۵) (ترجمه ویژه – طلایی ⭐️⭐️⭐️)

elsevier

 

 

این مقاله انگلیسی ISI در نشریه الزویر در ۱۱ صفحه در سال ۲۰۱۵ منتشر شده و ترجمه آن ۲۶ صفحه میباشد. کیفیت ترجمه این مقاله ویژه – طلایی ⭐️⭐️⭐️ بوده و به صورت کامل ترجمه شده است.

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

انتخاب پروژه در مدیریت پرتفولیو پروژه: یک مدل شبکه عصبی مصنوعی مبتنی بر عوامل مهم موفقیت

عنوان انگلیسی مقاله:

Project selection in project portfolio management: An artificial neural network model based on critical success factors

 

 

مشخصات مقاله انگلیسی
فرمت مقاله انگلیسی pdf و ورد تایپ شده با قابلیت ویرایش
سال انتشار ۲۰۱۵
تعداد صفحات مقاله انگلیسی ۱۱ صفحه با فرمت pdf
نوع مقاله ISI
نوع نگارش مقاله پژوهشی (Research Article)
نوع ارائه مقاله ژورنال
رشته های مرتبط با این مقاله مدیریت، حسابداری
گرایش های مرتبط با این مقاله حسابداری مالی، مدیریت پروژه، مدیریت فناوری اطلاعات
چاپ شده در مجله (ژورنال) مجله بین المللی مدیریت پروژه – International Journal of Project Management
کلمات کلیدی عوامل اصلی موفقیت، انتخاب پروژه، شبکه عصبی مصنوعی، ریسک پروژه
کلمات کلیدی انگلیسی Critical success factors – Project selection – Artificial neural network – Project risk
ارائه شده از دانشگاه گروه مهندسی مکانیک و هوافضا، دانشگاه ساپینزا رم، ایتالیا
نمایه (index) Scopus – Master journals List – JCR
نویسندگان Francesco Costantino, Giulio Di Gravio, Fabio Nonino
شناسه شاپا یا ISSN ۰۲۶۳-۷۸۶۳
شناسه دیجیتال – doi https://doi.org/10.1016/j.ijproman.2015.07.003
ایمپکت فاکتور(IF) مجله ۸٫۸۷۱ در سال ۲۰۱۹
شاخص H_index مجله ۱۳۴ در سال ۲۰۲۰
شاخص SJR مجله ۲٫۶۵۹ در سال ۲۰۱۹
شاخص Q یا Quartile (چارک) Q1 در سال ۲۰۱۹
بیس است 
مدل مفهومی دارد 
پرسشنامه دارد 
متغیر دارد 
رفرنس دارای رفرنس در داخل متن و انتهای مقاله
کد محصول ۱۰۹۱۳
لینک مقاله در سایت مرجع لینک این مقاله در نشریه Elsevier
نشریه الزویر

 

مشخصات و وضعیت ترجمه فارسی این مقاله
فرمت ترجمه مقاله pdf و ورد تایپ شده با قابلیت ویرایش
وضعیت ترجمه انجام شده و آماده دانلود
کیفیت ترجمه ویژه – طلایی ⭐️⭐️⭐️
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش  ۲۶ (۲ صفحه رفرنس انگلیسی) صفحه با فونت ۱۴ B Nazanin
ترجمه عناوین تصاویر و جداول ترجمه شده است 
ترجمه متون داخل تصاویر ترجمه نشده است 
ترجمه متون داخل جداول ترجمه نشده است 
ترجمه ضمیمه ترجمه نشده است 
ترجمه پاورقی ندارد 
درج تصاویر در فایل ترجمه درج شده است 
درج جداول در فایل ترجمه درج شده است 
درج فرمولها و محاسبات در فایل ترجمه  به صورت عکس درج شده است
منابع داخل متن به صورت انگلیسی درج شده است 
منابع انتهای متن به صورت انگلیسی درج شده است  

 

فهرست مطالب

چکیده

۱- مقدمه

۲- پیش زمینه نظری

۲-۱ متدلوژی‌های انتخاب پروژه

۲-۲ ارزیابی موفقیت پروژه

۲-۳ عوامل اصلی موفقیت پروژه

۳- متدلوژی پژوهشی

۴- یک مدل برای ارزیابی اولیه موفقیت پروژه

۴-۱ شبکه عصبی مصنوعی

۴-۲ طراحی مدل

۴-۳ نتایج و خطای دسته بندی

۵- بحث و نتیچه گیری

۵-۱ مفاهیم پژوهشی

۵-۲ پیامدهای مدیریتی

۵-۳ محدودیت‌ها و فرصت‌هایی برای پژوهش آینده

 

بخشی از ترجمه

چکیده

با وجود اینکه تعداد زیادی از ادبیات موضوعی بر تشخیص و تحلیل دلایل اصلی تاثیرگذار بر موفقیت پروژه تمرکز کرده‌اند، استفاده از این نتایج در مدیریت پرتفولیو پروژه هنوز تحت بررسی است. عوامل اصلی موفقیت (CSF) پروژه می‌توانند به عنوان معیار اصلی برای جلوگیری از دلایل ممکن شکست با یک روند انتخاب پروژه موثر، با در نظر گرفتن اهداف استراتژیک شرکت، تجربه مدیر پروژه و محیط رقابتی استفاده شوند. این پژوهش یک متدلوژی نوآورانه را برای کمک به مدیران در زمینه ارزیابی پروژه‌ها در طول فاز انتخاب پیشنهاد می‌کند. مقاله مراحل طراحی، توسعه و تست سیستم پشتیبان تصمیم را برای پیش بینی عملکرد پروژه توضیح می‌دهد. یک شبکه عصبی مصنوعی (ANN)، که برای هر مجموعه از CSF‌ها مقیاس پذیر است، سطوح ریسک پذیری پروژه را با استخراج تجربه مدیران پروژه از یک مجموعه از پروژه‌های موفق و ناموفق گذشته دسته بندی می‌کند.

 

مقدمه

محیط رقابتی امروزه، با فقدان اطلاعات گسترده، علائم گمراه کننده و سختی‌ها در پیش بینی سناریوهای آینده آن، کسب و مدیریت سرمایه گذاری‌های پروژه را مخاطره آمیزتر کرده است. یک پژوهش اخیر (Bloch et al., 2012) بر بیش از ۵۴۰۰ پروژه IT که توسط McKinsey و University of Oxford انجام شده بودند نشان داد که نیمی از پروژه‌های IT با بیش از ۱۵ میلیون دلار بودجه اجرا شدند، و به طور میانگین، ۴۵% بیش تر از بودجه مشخص شده بودند و ۱۷% در یک نقطه تهدید آمیز برای شرکت با شکست مواجه شدند.

 

محدودیت‌ها و فرصت‌هایی برای پژوهش آینده

محدودیت اصلی پژوهش این است که تحلیل تجربی از نمونه پروژه‌های متعلق به پرتفولیو پروژه یک پیمانکار EPC واحد استفاده می‌کند. اگر چه اندازه نمونه از نظر تعداد پروژه از عرصه‌های متفاوت پرتفولیو EPC (150) و کارشناسان درگیر متفاوت است، ابعاد آن نمی‌تواند تعمیم گسترده نتایج را توجیه کند. بنابراین، تلاش‌های آینده ما را به سمت کسب بسط نمونه برای افزایش قابلیت تعمیم نتایج یا تایید کاربرد تنها برای زمینه‌های خاص می‌برد.

 

بخشی از مقاله انگلیسی

Abstract

While a growing body of literature focuses in detecting and analyzing the main reasons affecting project success, the use of these results in project portfolio management is still under investigation. Project critical success factors (CSFs) can serve as the fundamental criteria to prevent possible causes of failures with an effective project selection process, taking into account company strategic objectives, project manager’s experience and the competitive environment. This research proposes an innovative methodology to help managers in assessing projects during the selection phase. The paper describes the design, development and testing stages of a decision support system to predict project performances. An artificial neural network (ANN), scalable to any set of CSFs, classifies the level of project’s riskiness by extracting the experience of project managers from a set of past successful and unsuccessful projects.

 

Introduction

The contemporary competitive environment, with its widespread lack of information, misleading signs and difficulties in forecasting future scenarios, makes the acquisition and management of projects investments always more risky. A recent research (Bloch et al., 2012) on more than 5,400 IT projects by McKinsey and the University of Oxford shows that half IT projects with over $15 million budget run, on average, 45% over budget and 17% fail to a point of threatening the very existence of the company.

 

Limitations and opportunities for future research

The main limitation of the research is that the empirical analysis relates on a sample of projects owing to the project portfolio of a unique EPC contractor. Although the sample size was significant in terms of number of projects from different areas of the EPC portfolio (150) and experts involved, its dimension cannot justify the broad generalization of the results. Therefore, our future efforts will be oriented toward obtaining an extension of the sample to increase the generalizability of the results or to confirm the application only to specific contexts.

 

تصویری از مقاله ترجمه و تایپ شده در نرم افزار ورد

 

دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی
عنوان فارسی مقاله:

انتخاب پروژه در مدیریت پرتفولیو پروژه: یک مدل شبکه عصبی مصنوعی مبتنی بر عوامل مهم موفقیت

عنوان انگلیسی مقاله:

Project selection in project portfolio management: An artificial neural network model based on critical success factors

 

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *