دانلود رایگان مقاله انگلیسی + خرید ترجمه فارسی | |
عنوان فارسی مقاله: |
مطالعه ارتباط کنترل ژنتیکی بیوسنتز اسید چرب دانه در براسیکا ناپوس در سطح ژنوم |
عنوان انگلیسی مقاله: |
Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus |
|
مشخصات مقاله انگلیسی (PDF) | |
سال انتشار | 2017 |
تعداد صفحات مقاله انگلیسی | 13 صفحه با فرمت pdf |
رشته های مرتبط با این مقاله | زیست شناسی |
گرایش های مرتبط با این مقاله | ژنتیک، فیزیولوژی گیاهی و علوم گیاهی |
چاپ شده در مجله (ژورنال) | مرزها در علوم گیاهی – Frontiers in Plant Science |
کلمات کلیدی | براسیکا ناپوس، ژنوتيپ بی چربی با توالي بندی Skim GBS), GWAS)، بيوسنتز اسيدهاي چرب، كيفيت دانه |
ارائه شده از دانشگاه | دانشکده بیولوژی گیاهان، دانشگاه غرب استرالیا |
رفرنس | دارد ✓ |
کد محصول | F1002 |
نشریه | Frontiersin |
مشخصات و وضعیت ترجمه فارسی این مقاله (Word) | |
وضعیت ترجمه | انجام شده و آماده دانلود |
تعداد صفحات ترجمه تایپ شده با فرمت ورد با قابلیت ویرایش | 22 صفحه با فونت 14 B Nazanin |
ترجمه عناوین تصاویر و جداول | ترجمه شده است ✓ |
ترجمه متون داخل تصاویر | ترجمه نشده است ☓ |
ترجمه متون داخل جداول | ترجمه نشده است ☓ |
درج تصاویر در فایل ترجمه | درج شده است ✓ |
درج جداول در فایل ترجمه | درج شده است ✓ |
منابع داخل متن | به صورت عدد درج شده است ✓ |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
فهرست مطالب |
چکیده
مقدمه
مواد و روش ها
ماده گیاهی و شرایط رشد
اندازه گیری اسید چرب
ژنوتیپ کردن توسط توالی بندی (GBS): ژنوتیپ بی چربی
مطالعه ارتباط در گستره ژنوم
نگاشت SNPs در محیط سایبری
اعتبار SNP
اعتبارسنجی GWAS
نتایج
همبستگی های تغییر فنوتیپی اسید های چرب در دانه ها / صفات
نتایج ژنوتیپ کردن با استفاده از توالی (GBS)
بحث
نتیجه گیری
|
بخشی از ترجمه |
چکیده مقدمه |
بخشی از مقاله انگلیسی |
Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs. INTRODUCTION Oilseed rape (Brassica napus L.) is now the second largest oil-producing crop in the world after soybean (70.9 and 314.5 million tons respectively; FAO1 ). Three of the major fatty acids (FAs) in oilseed rape oil are the monounsaturated FA oleic acid and the two polyunsaturated FAs linoleic acid and linolenic acid (Smooker et al., 2011). The high nutritional value of B. napus oil compared to other vegetable oils is attributed to a high level of oleic acid, as well as an optimal ratio (2:1) of the essential linoleic (omega 6) and linolenic (omega 3) FAs (Hu et al., 2006). For industrial purposes, thermal stability of B. napus oil is assured with a low level of linolenic acid. Understanding the genetic basis of fatty acid biosynthesis in oilseed rape is of great importance in order to manipulate its content. The process of oil biosynthesis has been well-characterized in the model species and closely related member of Brasicaceae; Arabidopsis thaliana. This complex process employs a coordinated action of genes involved in seed maturation, energy metabolism, fatty acid, and triacylglycerol (TAG) biosynthesis pathways (Baud and Lepiniec, 2010; Bates et al., 2013). De novo synthesis of FAs occurs within plastids of the seed and enables formation of palmitic acid (16:0), stearic acid (18:0), and oleic acid (18:1). Once produced, they are released by two classes of acyl-ACP thioesterase (FAT) enzymes: FATA with higher affinity to 18:1-ACP and FATB with higher affinity to 16:0- ACP (Bonaventure et al., 2003). Plastidial FAs are transported to the endoplasmic reticulum (ER) where they can undergo desaturation modification via FAD2 and FAD3, key enzymes known to generate polyunsaturated linoleic (18:2) and linolenic (18:3) FAs respectively (Okuley et al., 1994; Yang et al., 2012). In parallel to a desaturation pathway, FAs can be elongated by FAE1 to erucic acid or esterified to glycerol to generate TAG, a major form of seed oil in plants (James et al., 1995). Although the metabolic pathways for fatty acid biosynthesis synthesis are well known, genetic regulation of these pathways, and thus variable fatty acid composition in seed, is still poorly understood. B. napus (AACC, 2n = 38) originated from natural hybridization between B. rapa (AA, 2n = 20) and B. oleracea (CC, 2n = 18) around 7500 years ago. The diploid progenitors of B. napus underwent genetic triplication which led to formation of large gene families and abundant repetitive sequences. Oil biosynthesis genes have undergone expansion in B. napus which exceeds that known in other oilseed plants (Chalhoub et al., 2014). Polyploidy and the genome complexity of B. napus limit translation of fundamental knowledge from A. thaliana into oilseed rape crop improvement as identification of individual genes controlling natural variation in this crop is challenging (Wells et al., 2014). To date, several studies have been undertaken to dissect the genetic architecture of fatty acid biosynthesis in oil crops. Quantitative trait loci (QTL) mapping studies in B. rapa (Basnet et al., 2016), Glycine max (Wang et al., 2014), Jatropha curcas, and B. napus allowed identification of loci with small to large allelic effect involved in fatty acid biosynthesis in seeds (Burns et al., 2003; Hu et al., 2006; Zhao et al., 2008; Yan et al., 2011; Wang et al., 2015). Orthologs encoding major enzymes involved in FA biosynthesis, such as FAD2 and FAD3, have been mapped in B. napus on chromosomes A1, A5, C1, and C5 (Scheffler et al., 1997; Schierholt et al., 2000; Yang et al., 2012) and A3, A4, A5, C3, and C4 (Hu et al., 2006; Smooker et al., 2011) respectively. Recently, a systems genetic approach that combined gene expression studies with QTL genetic mapping (eQTL) led to identification of other FAD genes (BrFAD5 and BrFAD7) playing an interactive role with BrFAD2 in regulation of oleic and linoleic FAs in B. rapa (Basnet et al., 2016). Transcriptional analysis studies in developing seeds of Arabidopsis and B. napus showed that regulation of FA biosynthesis is complex and involves genes responsible for transcriptional regulation, starch metabolism, as well as auxin and jasmonate hormone signaling (Niu et al., 2009; Mendes et al., 2013; Chen et al., 2015). Recently, genome wide association studies (GWAS) have evolved as a powerful tool to dissect the genetic architecture of complex traits in crop species (Edwards et al., 2013). Advances in next generation sequencing (NGS) allow identification of thousands of genetic marker loci which enables their statistical association with traits of interest based on linkage disequilibrium (Davey et al., 2011). Skim-based genotyping by sequencing (skimGBS) uses low-coverage (1–10x) whole genome sequencing for high resolution genotyping. Genomic reads from parental individuals are mapped to the reference genome and SNPs are predicted. Reads from the progeny are then mapped to the same reference and comparison with the parental SNP file enables the calling of SNPs in the progeny of one or other of the parental genotypes (Bayer et al., 2015). Associated genetic markers can be causal for the trait of interest or in linkage disequilibrium with a causal locus (Rafalski, 2010). To date, GWAS approaches using whole genome sequencing have allowed researchers to dissect genetic regulation of complex traits such as oil biosynthesis, carotenoid concentration and yield in well studied crops including maize and rice (Gao et al., 2013; Li H. et al., 2013; Suwarno et al., 2015). In oilseed rape, GWAS using DartSeq and Brassica 60K SNP array genotyping approaches allowed identification of alleles involved in regulation of flowering time, as well as seed quality traits including germination, vigor and seed weight (Li et al., 2014; Hatzig et al., 2015; Raman et al., 2016). The aim of the present study was to perform GWAS association mapping using whole genome SkimGBS (Bayer et al., 2015) to identify allelic variation that affects fatty acid composition in progeny seeds from 60 B. napus doubled haploid (DH) lines. This novel approach led to identification of a genomic hotspot of candidate regulatory genes on chromosome A05 of winter type oilseed rape. |