دانلود رایگان مقاله انگلیسی پخش بار اقتصادی چند دوره ای غیرمتمرکز برای مدیریت بلادرنگ تقاضای انعطافپذیر به همراه ترجمه فارسی
عنوان فارسی مقاله | پخش بار اقتصادی چند دوره ای غیرمتمرکز برای مدیریت بلادرنگ تقاضای انعطافپذیر |
عنوان انگلیسی مقاله | Decentralized Multi-Period Economic Dispatch for Real-Time Flexible Demand Management |
رشته های مرتبط | مهندسی برق، سیستم های قدرت، مهندسی الکترونیک و مکاترونیک |
کلمات کلیدی | بهینه سازی توزیع شده، پخش بار اقتصادی، وسیله نقلیه الکتریکی، بازار انرژی، شارش بهینه توان، شبکه هوشمند |
فرمت مقالات رایگان |
مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد |
کیفیت ترجمه | کیفیت ترجمه این مقاله متوسط میباشد |
نشریه | آی تریپل ای – IEEE |
مجله | یافته ها در حوزه سیستم های قدرت – Transactions on Power Systems |
سال انتشار | 2016 |
کد محصول | F675 |
مقاله انگلیسی رایگان (PDF) |
دانلود رایگان مقاله انگلیسی |
ترجمه فارسی رایگان (PDF) |
دانلود رایگان ترجمه مقاله |
خرید ترجمه با فرمت ورد |
خرید ترجمه مقاله با فرمت ورد |
جستجوی ترجمه مقالات | جستجوی ترجمه مقالات مهندسی برق |
فهرست مقاله: چکیده |
بخشی از ترجمه فارسی مقاله: I. مقدمه |
بخشی از مقاله انگلیسی: I. INTRODUCTION THE economic dispatch is the basic mechanism used to determine close to real-time the operating set-points of all controllable devices connected in the power system in an economically efficient way. In its traditional form it largely involves committed conventional generators, known renewable generation and demand, and could well be approximated by a deterministic problem typically covering a short period in time. However this changes when deferrable demand is taken into consideration, as the utility gained by a unit of energy purchased by an electric vehicle (EV) or storage unit now, depends on the price of energy in the future, which is typically determined by the large generating units located at the transmission level. While currently some system operators use economic dispatch mechanisms that look up to 2 hours ahead [1], this is probably not an adequate period of time to schedule an EV or a storage device. As [2] has shown, insufficient coordination between demand shifting decisions and generation scheduling can result in increased energy price volatility. In addition the increased flexible demand (mainly in the form of EVs) will put considerable strain on existing power distribution infrastructure. Consequently the balancing market should not only determine the price and optimal amount of energy trades for the current time-step (as it currently does) but also provide a good indication of the demand shifting impact on the value of energy in the near future. Furthermore, it would have to incorporate the constraints and peculiarities of distribution networks. Overall the structure of the traditional ED problem has to change. Naturally two fundamental questions come up: what is the formulation and how could it be solved. A. Investigating the Problem Structure A small number of papers have indeed considered the flexible demand and generation coordination problem, but not in a balancing market context. The centralized approaches in [3, 4, 5, 6] focus on unit commitment (UC). Reference [7] presents a transmission-level deterministic convexified OPF formulation including storage. While the multi-period optimization structure of these papers fits our problem, the solution approaches themselves do not. Due to the problem size they work through approximations by transmission-level demand aggregation. Thus taking into account distribution network constraints is out of the question. The difficulty of scale could be overcome through distributed solution approaches. References [8, 9] present Lagrangian Relaxation (LR) based schemes, without however taking into account any network constraints. The approach in [10] does, but does not consider flexible demand or constraints at the distribution level. The latter is also the case for [11], which proposes a price-update mechanism to improve standard LR convergence speed. However convergence can lead to suboptimal points and there is no clear indication of better performance compared to other distributed methods that decompose an augmented Lagrangian. An alternative heuristic method for updating prices within a LR scheme is proposed in [12], which involves defining arbitrary limits to actual user flexibility. That paper focuses on device coordination within a microgrid however, and does not consider coordination of the latter with the rest of power system. Reference [13] proposes a two-level hierarchical structure for scheduling EVs but does not include distribution network constraints. None of these six papers considers the stochastic nature of the problem. The aspect of uncertainty is considered in [14], which pro poses a rolling horizon approach. This fits naturally to the balancing market which is cleared every few minutes. While that work uses a detailed unbalanced load flow model for the distribution network, it does not consider its coordination with the transmission level. In addition the need for such highly detailed models for all optimization periods is not justified, as there would be little point in e.g. optimizing losses or voltage when nodal demand variance is high. A problem structure closer to what [15] suggests, i.e. a discrete time model, with varying system modeling detail depending on the degree of uncertainty, seems a better option. That paper however focuses on unit commitment and does not consider flexible demand or distribution network constraints. |