دانلود رایگان ترجمه مقاله مشخصه های صوتی گلوله ها – IEEE 2007

دانلود رایگان مقاله انگلیسی تحلیل مشخصه های صوتی شلیک گلوله به همراه ترجمه فارسی

 

عنوان فارسی مقاله تحلیل مشخصه های صوتی شلیک گلوله
عنوان انگلیسی مقاله Acoustical Characterization of Gunshots
رشته های مرتبط فیزیک، فیزیک کاربردی
فرمت مقالات رایگان

مقالات انگلیسی و ترجمه های فارسی رایگان با فرمت PDF آماده دانلود رایگان میباشند

همچنین ترجمه مقاله با فرمت ورد نیز قابل خریداری و دانلود میباشد

کیفیت ترجمه کیفیت ترجمه این مقاله متوسط میباشد 
توضیحات ترجمه این مقاله به صورت خلاصه انجام شده است.
نشریه آی تریپل ای – IEEE
سال انتشار ۲۰۰۷
کد محصول F862

مقاله انگلیسی رایگان (PDF)

دانلود رایگان مقاله انگلیسی

ترجمه فارسی رایگان (PDF)

دانلود رایگان ترجمه مقاله

خرید ترجمه با فرمت ورد

خرید ترجمه مقاله با فرمت ورد
جستجوی ترجمه مقالات جستجوی ترجمه مقالات فیزیک

  

فهرست مقاله:

چکیده
I. مقدمه
A . «انفجار ضربه¬ای در دهانه لوله تفنگ»
B . صداهای مکانیکی
C . سامانه ها و اسلحه های مافوق صوت B . مدل ساده هندسی
D . ارتعاشات سطح
II . تحلیل صداهای ضبط شده هنگام شلیک گلوله
A . مشخصه های صوتی اسلحه مورد آزمایش
B . مدل ساده هندسی
III . تضعیف و بازتاب صوت
A . عوامل محیطی
B . اثر باد
C . اثر دما
D . سطح زمین و موانع
E . اثر رطوبت
IV . بررسی دیگر موارد کاربردی

 

بخشی از ترجمه فارسی مقاله:

I. مقدمه
جرم و جنایت، تروریسم و اقدامات نظامی با سلاح گرم، باعث افزایش روز افزون نگرانی ها میان مامورین امنیتی و نظامی و مردم شده است. در رابطه با خواص صوتی شلیک گلوله، تجهیزات و سیستمهای مختلفی تجاری سازی شده و به بازار عرضه گردیده است. از این تجهیزات می توان در شناسایی مشخصه های صوتی گلوله، طبقه بندی و تشخیص نوع اسلحه، ردیابی فرد تیرانداز و شناسایی محل تیزاندازی استفاده نمود. میزان دقت این تجهیزات در تخمین نوع اسلحه و مشخصه‌های شلیک به شواهد آکوستیکی موجود وابسته است. بررسی شواهد صوتی نیازمند داشتن درک کاملی از مشخصه های صوت ناشی از شلیک و تاثیر عوامل بیرونی نظیر انعکاس صوت، جذب، شکست صوت در برخورد با زمین و پیرامون و مواردی از این دست می باشد.
A . «انفجار ضربه ای در دهانه لوله تفنگ»
در یک تفنگ معمولی با استفاده از مقدار مشخصی باروت، نیروی پرتابی ایجاد می شود که موجب خارج شدن گلوله از دهانه تفنگ می گردد. صدای انفجار حاصل از شلیک این تفنگ به تمام جهات انتشار می یابد. اما بیشتر انرژی صوتی رها شده به سمتی می رود که دهانه تفنگ نشانه رفته است. به این موج انفجاری و انرژی صوتی رها شده از دهانه اسلحه «موج انفجار ضربه ای دهانه اسلحه» گفته می شود و زمان آن کمتر از ۳ میلی ثانیه می باشد. برای اندازه گیری این امواج از واحد متر بر ثانیه استفاده می شود (به طور مثال ۳۴۳ متر بر ثانیه در دمای ۲۰ درجه).
این امواج ضربه ای صوتی پس از رها شدن با سطح زمین، موانع موجود در اطراف، «شیبهای بادی و دمایی» و جاذب های اتمسفری برخورد می کند. سیگنالهای صوتی ضبط شده در نزدیکی دهانه لوله تفنگ کاملا خالص است، در حالی که سیگنالهای ضربه ای دریافت شده حاصل از شلیک در فاصله دورتر، نامفهوم است و این نشان می دهد که موارد پیرامونی و انعکاس امواج روی سیگنال اصلی تاثیر دارند.
برخی از سلاحهای کمری و تفنگها را می توان مجهز به صدا خفه کن نمود. صدا خفه کن باعث کاهش صدای شلیک اسلحه می شود، شعله دهانه را مهار می کند، احتمال شناسایی شدن را کاهش می دهد و همچنین از آسیب رسیدن به گوش جلوگیری می‌کند. سیستمهایی که از روش مبتنی بر صدای ضربه ای دهانه تفنگ برای شناسایی استفاده می کنند، بایستی احتمال استفاده از صدا خفه کن را در نظر داشته باشند.
B . صداهای مکانیکی
صداهای مکانیکی بوجود آمده هنگام کار با بعضی سلاحها را می توان در امور شناسایی بهره برد، مانند صدای ماشه ، مکانیزم گلنگدن ، خارج کردن خشاب خالی و قراردادن خشاب پر و شارژ کردن گلوله در خشاب. البته فعل و انفعالات مکانیکی در یک اسلحه بسیار کم صداتر از صدای شلیک گلوله می باشد؛ از این روی این روش تنها زمانی موثر است که بتوان میکروفن را نزدیک اسلحه نصب نمود. به طور مثال با نصب یک سیستم شنود نزدیک فرد شلیک کننده، می توان این گونه اطلاعات را کسب کرد.

IV . بررسی دیگر موارد کاربردی
در یک اسلحه کمری و یا هر اسلحه ای با انرژی پرتابی پایین تر از سرعت صوت، فقط موج ضربه ای دهانه اسلحه (muzzle blast) ایجاد می شود (به علت پایین بودن سرعت گلوله، موج ضربه ای پشت گلوله (shock wave) ایجاد نمی شود) . نتایج رکورد سیگنالهای یک اسلحه کمری (مانند HK USP، ۴۰ smith، وسون، فدرال) در شکل ۶ نشان داده شده است. همانطور که مشاهده می شود، اسلحه فاقد امواج ضربه ای پشت گلوله است و نیز امواج ضربه ای دهانه تفنگ، از شدت و ماندگاری کمتری نسبت به اسلحه آزمایش شده در شکلهای ۲ تا ۴ برخوردار است.
از تفاوت اطلاعات به دست آمده از دو مدل اسلحه، می توان نتیجه گرفت که تحلیل این نوع سیگنالهای صوتی می تواند کاملا در پرونده های جنائی و شناسایی اسلحه کاربرد داشته باشد. حتی ضبط وقایع از طریق تلفن پلیس (۹۱۱) و یا هر دستگاه ضبط صوت معمولی می تواند کمک کننده باشد. البته کیفیت ضبط صوتهای معمولی چندان قابل اطمینان نیست. امواج ضربه ای تولید شده در پشت گلوله وقتی که خیلی دور و پراکنده می شوند، به علت نویزهای موجود در محیط، دیگر قابل شناسایی نیستند، مخصوصا اگر محیط دارای موانع و تداخل امواج بی شمار باشد. در هر صورت این دو موج مهم که هنگام شلیک به وجود می آیند، با سایر امواج تداخل پیدا می کنند و ممکن است سیگنالهایی که دریافت می شود حاوی اطلاعات بیشتری از امواج پیرامون باشد تا اینکه اطلاعات مناسبی درباره اسلحه بدهد. هنوز یک سیستم کامل و جامع برای این منظور ارائه نگردیده است.

بخشی از مقاله انگلیسی:

I. INTRODUCTION

Criminal, terrorist, and military actions involving firearms are of increasing concern to police, soldiers, and the public. A variety of commercial and experimental acoustical detection and classification systems designed for gunshot sounds are available. These systems can be intended to detect acoustical “gunshot signatures,” to classify or identify specific firearm types, and to detect and localize snipers. The degree to which a system can achieve satisfactory performance is typically limited by the assumptions required to estimate the firearm and/or projectile behavior based on the available acoustic evidence. Assessing and evaluating acoustic gunshot detection systems requires a thorough understanding of the characteristics of gunshot sounds and the significance of sound wave reflection, absorption, and diffraction from the ground, buildings, and other nearby objects.

A. Muzzle Blast A conventional firearm uses a confined explosive charge to propel the bullet out of the gun barrel. The sound of the explosion is emitted from the gun in all directions, but the majority of the acoustic energy is expelled in the direction the gun barrel is pointing [1-5]. The explosive shock wave and sound energy emanating from the barrel is referred to as the muzzle blast, and typically lasts for less than 3 milliseconds. The muzzle blast acoustic wave propagates through the air at the speed of sound (e.g., 343 m/s at 20°C), and interacts with the surrounding ground surface, obstacles, temperature and wind gradients in the air, spherical spreading, and atmospheric absorption. If a recording microphone is located close to the firearm, the direct sound of the muzzle blast is the primary acoustical signal. On the other hand, if the microphone is located at a greater distance from the firearm the direct sound path may be obscured and the received signal will exhibit propagation effects, multi-path reflections, and reverberation. Some handguns and rifles can be equipped with an acoustic suppressor. Suppressors are designed to reduce the audible report (and often the visible explosive flash) of the muzzle blast to reduce the likelihood of detection and/or to prevent hearing damage. Thus, gunshot acoustical detection systems that rely on the muzzle blast must accept the possibility of suppressor use by clandestine individuals.

B. Mechanical Action For some firearms the sound of the mechanical action may be detectable. This includes the sound of the trigger and hammer mechanism, the ejection of spent cartridges, and the positioning of new ammunition by the gun’s automatic or manual loading system. The mechanical action is, of course, generally much quieter than the muzzle blast and projectile shock wave, so this acoustical signal is only relevant if the microphone is located close enough to the firearm to pick up these subtle, telltale sounds. For example, personal surveillance recordings or recorded phone conversations that take place in proximity to the shooter may contain this information.

IV. OTHER PRACTICAL CONSIDERATIONS

A subsonic rifle or handgun without a suppressor will produce a muzzle blast acoustic signal, but the subsonic projectile will not create a shock wave or any other appreciable acoustic signal as it propagates through the air. A recording of a handgun and subsonic bullet (HK USP compact, 40 Smith and Wesson, Federal Hydroshock) is shown in Fig. 6. Note that no shock wave signature is present. The muzzle blast of this particular handgun is less intense and shorter in duration than the muzzle blast of the rifle shown in Figs. 2-4. It would be desirable for criminal forensic analysis to be able to identify a specific firearm from an audio surveillance recording, such as a 911 call or a tape of a land mobile radio conversation in which a gunshot was captured, but conventional audio recordings have not been shown to be reliable for identifying particular firearms [1]. However, recordings obtained in a controlled manner such that the orientation of the firearm and the distance between the gun and the microphone are held constant do show consistency from one shot to another [2]. At distances far from the bullet’s trajectory, the shock wave will have expanded sufficiently by spatial spreading that it may no longer be detectable compared to ambient noise. Also, as noted previously, the situation is much more complicated if the acoustical surroundings include obstacles and reflecting surfaces so that the received acoustical signal contains multipath interference, diffraction effects, and other propagationrelated flaws. The very short duration of the muzzle blast and the acoustic shock waves act like acoustic impulses, so gunshot recordings obtained in complicated surroundings will consist of the convolution of the gun’s report and the acoustic impulse response of the local reverberant environment, resulting in substantial temporal smearing. In fact, reverberant recordings will typically contain more information about the acoustical surroundings than about the gun or the projectile. Deconvolution of the gunshot from the reverberant background can be attempted, but no completely reliable means to accomplish this task for gunshots has been published.