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a b s t r a c t

Real-life problems usually include conflicting objectives. Solving multi-objective problems
(i.e., obtaining the complete efficient set and the corresponding Pareto-front) via exact
methods is in many cases nearly intractable. In order to cope with those problems, several
(meta) heuristic procedures have been developed during the last decade whose aim is to
obtain a good discrete approximation of the Pareto-front. In this vein, a new multi-objec-
tive evolutionary algorithm, called FEMOEA, which can be applied to many nonlinear
multi-objective optimization problems, has recently been proposed. Through a comparison
with an exact interval branch-and-bound algorithm, it has been shown that FEMOEA pro-
vides very good approximations of the Pareto-front. Furthermore, it has been compared to
the reference algorithms NSGA-II, SPEA2 and MOEA/D. Comprehensive computational
studies have shown that, among the studied algorithms, FEMOEA was the one providing,
on average, the best results for all the quality indicators analyzed. However, when the
set approximating the Pareto-front must have many points (because a high precision is
required), the computational time needed by FEMOEA may not be negligible at all. Further-
more, the memory requirements needed by the algorithm when solving those instances
may be so high that the available memory may not be enough. In those cases, parallelizing
the algorithm and running it in a parallel architecture may be the best way forward. In this
work, a parallelization of FEMOEA, called FEMOEA-Paral, is presented. To show its applica-
bility, a bi-objective competitive facility location and design problem is solved. The results
show that FEMOEA-Paral is able to maintain the effectiveness of the sequential version and
this by reducing the computational costs. Furthermore, the parallel version shows good
scalability. The efficiency results have been analyzed by means of a profiling and tracing
toolkit for performance analysis.
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1. Introduction

Multi-objective optimization problems are ubiquitous. Many real-life problems require taking several conflicting points
of view into account [2,3,11,12,20,29]. Thus, general multi-objective optimization algorithms able to cope with those hard-
to-solve optimization problems are required.

In this paper, we deal with the general nonlinear multi-objective optimization problem (MOP), which can be formulated
as follows:
Please
a loca
min ff 1ðyÞ; . . . ; f mðyÞg;
s:t: y 2 S # Rn;

ð1Þ
where f 1; . . . ; f m : Rn�!R are m real-valued functions. Let us denote by f ðyÞ ¼ ðf 1ðyÞ; . . . ; f mðyÞÞ the vector of objective func-
tions and by Z ¼ f ðSÞ the image of the feasible region.

When dealing with multi-objective problems we need to clarify what ‘solving’ a problem means. In the following, some
widely known definitions are provided to explain the concept of solution of (1).

Definition 1. A feasible vector y� 2 S is said to be efficient iff there does not exist another feasible vector y 2 S such that
f lðyÞ 6 f lðy�Þ for all l ¼ 1; . . . ;m, and f jðyÞ < f jðy�Þ for at least one index j (j 2 f1; . . . ;mg). The set SE of all the efficient points is
called the efficient set or Pareto-set. If y1 and y2 are two feasible points and f lðy1Þ 6 f lðy2Þ for all l ¼ 1; . . . ;m, with at least one
of the inequalities being strict, then we say that y1 dominates y2.

Efficiency is defined in the decision space. The corresponding definition in the criterion space is as follows:

Definition 2. An objective vector z� ¼ f ðy�Þ 2 Z is said to be non-dominated iff y� is efficient. The set ZN of all non-dominated
vectors is called the non-dominated set or Pareto-front. If y1 and y2 are two feasible points and y1 dominates y2, then we say
that f ðy1Þ dominates f ðy2Þ.

Ideally, solving (1) means obtaining the whole efficient set, that is, all the points which are efficient, and its corresponding
Pareto-front. However, for a majority of MOPs, it is not easy to obtain an exact description of the efficient set or Pareto-front,
since those sets typically include an infinite number of points (usually a continuum set). To the extent of our knowledge, only
three exact general methods, namely, three branch-and-bound methods (see [9,10,24]) have been proposed in literature
which obtain an enclosure of those sets up to a pre-specified precision. Specifically, they offer a list of boxes (multi-dimen-
sional intervals) whose union contains the complete efficient set (and their images the corresponding Pareto-front) as a solu-
tion. However, they are time consuming. Furthermore, they have large memory requirements, so that only small instances
can be solved with them. Other interesting approaches can be found in [7,28].

Contrarily, the use of (meta) heuristics may allow us to obtain ‘good approximations’ of the Pareto-front, even for problems
with more variables and objectives. By a good approximation we mean a discrete set of points spread over the complete Pareto-
front and evenly distributed over it. There is a plethora of methods with that purpose in literature although most of them are
designed to deal with combinatorial MOPs (some exceptions are [5,14,17,21,25]). Nonetheless, the most common approach
utilized in literature to cope with (1) is the use of multi-objective evolutionary algorithms (MOEAs). This is due to their ability
to find multiple efficient solutions in one single simulation run (see [4] for an excellent introduction to the topic).

Recently, a new Fast and Efficient Multi-Objective Evolutionary Algorithm (FEMOEA), aimed at quickly obtaining a good
fixed size approximation of the Pareto-front has been presented [22,23]. It combines ideas from other typical MOEAs with
some concepts from other evolutionary algorithms (EAs) devised to cope with single-objective optimization problems. Fur-
thermore, in order to accelerate its convergence towards the optimal Pareto-front, FEMOEA includes two new devices: a new
improving method and a new stopping rule. These two contributions can be included in any MOEA. In [22], FEMOEA was
compared to iB&B, an interval branch-and-bound algorithm able to obtain an enclosure of the true Pareto-front, when solv-
ing the hard-to-solve competitive facility location problem described in [10]. A comprehensive computational study showed
that FEMOEA was competitive, being able to reduce, in average, the computing time of the exact method by approximately
99%, and this offering good quality final solutions, i.e., all the points offered by the algorithm were (nearly) efficient and they
were evenly distributed over the complete Pareto-front. Additionally, in [23], FEMOEA was compared to the well-known
NSGA-II [6] and SPEA2 [33] algorithms, which have become the reference algorithms in the multi-objective evolutionary
computation community. Besides, it was also compared to MOEA/D, a more recent algorithm which has proved to be one
of the most competitive multi-objective evolutionary algorithms [30,31]. Several quality indicators were considered, namely,
hypervolume, average distance, additive epsilon indicator, spread and spacing. According to the computational results and
statistical analysis performed, the new algorithm outperformed, on average, the other three algorithms in all the quality
indicators.

However, when the set approximating the Pareto-front must have many points (because a high precision is required), the
computational time required by FEMOEA may not be negligible at all. Furthermore, the memory requirements needed by the
algorithm when solving those instances may be so high that the available memory may not be enough. In those cases, par-
allelizing the algorithm and running it in a parallel architecture may be the best way forward. As far as the authors’ knowl-
edge is concerned, the development of parallel multi-objective evolutionary algorithms is a booming field, which has not
been explored enough (see [1,15,16,26]).
cite this article in press as: A.G. Arrondo et al., Parallelization of a non-linear multi-objective optimization algorithm: Application to
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The rest of the paper is organized as follows. In Section 2, the sequential algorithm is briefly described. In Section 3, the
parallel version of FEMOEA, FEMOEA-Paral, is detailed. To show its applicability, a bi-objective competitive facility location
and design problem is solved. The associated model and the corresponding computational study is shown in Section 4.
Finally, in Section 5, the main conclusions are summarized.

2. The sequential method FEMOEA

This section is devoted to describing some concepts of FEMOEA which are needed to explain its parallelization. Details
about the sequential version procedures are omitted. The interested reader is referred to [22,23] for further information.

The most important concept in FEMOEA is that of an individual. An individual is defined by a center and a radius. The
center is a solution and the radius is a positive number which determines the subregion of the search space covered by that
individual. The main aim of the radius is to focus the searching operators on the corresponding subregions. For further infor-
mation about the concept as well as the calculation of the radius associated to each individual, see [19,22,23].

Apart from the center and the radius, an individual has two attributes which are related to the criterion space: the non-
domination rank (drank) and the crowding distance (cdist), see [6]. The non-domination rank indicates the number of individ-
uals which dominate that particular individual. In this sense, a zero value means that such an individual is not dominated by
any of the remaining ones in the current population. The crowding distance is an estimation of the density of solutions sur-
rounding a particular solution in a population.

During the optimization process, two lists of individuals are kept by FEMOEA, whose maximum size M, the same for both
lists, is a given input parameter. The parameter M refers to the desired number of solutions in the final Pareto-front. The first
list, named population_list, is composed of M diverse individuals with different attributes, i.e. various radii, non-domination
ranks and crowding distances. The second list, called external_list, can be understood as a deposit to keep non-dominated
solutions.

Definition 3. A solution i is preferable to a solution i0; i � i0, if di
rank < di0

rank or di
rank ¼ di0

rank and ci
dist > ci0

dist .
The previous relation is known as crowded comparison operator (see [6]). To accelerate the selection process, both lists are

always sorted according to such an operator.
In FEMOEA, each individual is intended to occupy an efficient solution. For this purpose, FEMOEA directs the individuals

during the searching process towards the most suitable regions. Therefore, notice that a particular individual is not a fixed
part of the search domain, but it can move through the space as the search proceeds. ‘Individual-management’ is one of the
core parts of FEMOEA. It consists of procedures for creating and selecting individuals during the whole optimization process.
Additionally, FEMOEA includes an improving method, which has been logically separated from the individual-management.
This means that FEMOEA can easily be adapted to solve any other multi-objective problem, only adapting the improving
technique. In [23], a new method to improve the efficiency of points, where no gradient information is used, was proposed,
whereas in [22], a gradient-based method was designed.

It is important to mention that a single individual in the population_list can create a new offspring or be improved without
participation of the remaining ones. Consequently, there exists an intrinsic parallelism, which consists of dividing the indi-
viduals among the number of available processors. Nevertheless, although there exists no relationship among the individuals
in the population_list, the evolution of the population highly depends on the solutions stored in the external_list. Furthermore,
the external_list may be modified (adding, removing or updating individuals) by procedures initially applied to the popula-
tion_list. Then, the effectiveness of the parallel version may suffer a decrease if the embraced relationship between the exter-
nal_list and the population_list is not taken into account.

3. The parallel algorithm FEMOEA-Paral

The programming paradigm used to parallelize FEMOEA may be considered a coarse-grain model, where each processor
executes FEMOEA independently of the remaining ones most of the time but considering a smaller population_list. More pre-
cisely, the length of such a list will be equal to M0 ¼ M=P, assuming that P processors will be available. This list will be named
local_population_list in the following. Therefore, the idea is that different processors work with a smaller and different list of
individuals in such a way that, when merging all the local lists, a population list similar to that of the sequential version can
be obtained. Nevertheless, although there exists no relationship among individuals in the population_list, and hence they can
be distributed among the processors without problems, the external_list is not divided among the processors to prevent poor
effectiveness. On the contrary, each processor has a local copy of it, which will be called local_external_list throughout this
work.

An important issue to highlight is that, unlike the sequential version, those two lists are not sorted by the crowded com-
parison operator, but only by the first objective function value. Since the selection will be carried out in parallel, the main-
tenance of sorted lists by the crowded comparison operator is counter-productive in terms of efficiency.

Apart from these two lists, another list, called auxiliary_external_list is maintained during the optimization process. Such a
list is only stored at the processor with identification number 0; P0, and keeps the most preferable individuals found during
the whole optimization process.
Please cite this article in press as: A.G. Arrondo et al., Parallelization of a non-linear multi-objective optimization algorithm: Application to
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Algorithm 1 sketches the structure of the parallel algorithm. In the following, the different key stages are described.

Algorithm 1. FEMOEA-Paral

1: Init_individuals_lists_paral
2: while termination criteria are not satisfied
3: Create_new_individuals_paral (evals)
4: Select_individuals_paral (local_population_list)
5: Improve_individuals_paral (local_population_list)
6: Update_local_external_list
7: Select_individuals_paral (local_external_list)
8: Improve_individuals_paral (local_external_list)
9: end while
10: if length (auxiliary_external_list) < M
11: Compose_pareto
12: end if
� Init_individuals_lists_paral: Initially, as many individuals as the parameter M0 indicates are created at each processor. As in
the sequential version, the center of the individuals are randomly computed, while their radii will be the radius associated
at level 1. The local_population_list is initialized from this set of individuals, while the local_external_list will consist only of
the non-dominated individuals.

After this procedure, a loop starts, which basically creates, selects and improves individuals. This loop is executed until a
considerable improvement of the Pareto-front (placed in the auxiliary_external_list) is not obtained in three consecutive
approximations or the maximum level L is achieved. L is an input parameter. Notice that the termination criteria is controlled
by processor P0.

� Create_new_individuals_paral (evals): The sequential Create_new_individuals procedure explores the search space to iden-
tify regions with good solutions. To achieve a balance between exploration and exploitation, the creation procedure
applies a sequence of genetic operators, which use the accumulated experiences by making comparisons with the solu-
tions stored in the external_list. The Create_new_individuals_paral method is similar to its sequential counterpart. The only
difference appears in the population list length, which is equal to M for the sequential case and to M0 ¼ M=P for the par-
allel version. The external list sizes are, in both cases, equal to M, although in the parallel version the local_external_list is
used instead of the external_list of the sequential version.
� Select_individuals_paral (list): The sequential Select_individuals procedure reduces the list length when it reaches its max-

imum allowable capacity. Then, the most preferable individuals will be selected (see Definition 3). Notice that, in the par-
allel version, each processor maintains a local list. Performing selections by only considering the local information may be
counterproductive in terms of effectiveness, since a solution which is not preferable in a particular processor could be
preferable when taking all the local lists into account. Then, in order to prevent a decrement in the global effectiveness,
selections are not carried out locally at each processor. Instead, a global selection considering all the lists at the P proces-
sors is accomplished. This may imply that large amounts of data must be frequently transferred among processors. To
speed-up the communication overheads and hence the selection procedure, a hierarchical tree communication schema
has been designed. Let us assume that the root of the tree is processor P0. Then, processor P0 may be understood as
the collector of all the transferred information. The maximum width of the hierarchical tree is given by the number of
available processors P, which are identified by Pid with id 2 ½0; P � 1�. Its maximum number of stages is given by
stgmax ¼ log2ðPÞ. Each stage has associated a figure stg 2 ½0; stgmax�.
There exist three kinds of processors: senders, receivers and idle processors. As can be observed in Fig. 1, the role of each
processor varies through the communication model. When a processor is a receiver, it obtains a list from a sender pro-
cessor, composes a joint list considering the own individuals list and the received one and computes the drank value asso-
ciated to each individual. Then, a selection which will vary depending on the transferred list and the stage of the
communication model, is carried out.
– If list refers to local_population_list. In this case, if stg < stgmax, the selection is only carried out in terms of domination

ranks. More precisely, the minimum non-domination rank dmin
rank in such a way that at least 2 �M0 � 2stgþ1 individuals exist

with a non-domination rank smaller than or equal to dmin
rank is computed. Those individuals with drank P dmin

rank will be
removed from the joint list. The remaining ones will be transferred through the communication hierarchical tree.
In the last stage of the selection procedure, i.e. stg ¼ stgmax, the receiver processor (P0) is the hierarchical tree root,
and it will select the M most preferable individuals by using the crowded comparison operator. The resulting popula-
tion_list will then be distributed back among all the processors, in such a way that M0 individuals will be sent directly
to each processor.
Please cite this article in press as: A.G. Arrondo et al., Parallelization of a non-linear multi-objective optimization algorithm: Application to
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Fig. 1. Select_individuals_paral procedure.
– If list refers to local_external_list and stg < stgmax, only the non-dominated individuals will be maintained in the joint
list and transferred to the next stage of the hierarchical communication tree. If stg ¼ stgmax, processor P0 (the receiver)
will reduce the joint list to the M most preferable individuals and will store it in its own local_external_list. Then, P0

distributes its local_external_list directly among all the processors as explained before.
� Improve_individuals_paral (list): This method is the parallelization of the sequential Improve_individuals(list) procedure,

where each individual in the input list invokes an improving method. Notice that it is possible to implement any kind
of local optimizer to work with the individual. When the calling individual belongs to the population_list, the local method
allows, on the one hand, to push that individual towards the true Pareto-set and, on the other hand, to study its surround-
ing area to obtain indeterminate solutions, which may be inserted into the external_list. The inclusion of indeterminate
points in the external_list may improve the quality of the final Pareto-front, but it increases the computational effort
(the more elements in the list, the more computing time required to manage the external_list). Looking for a compromise
between quality of the final Pareto-front and computational effort, indeterminate solutions are not inserted into the exter-
nal_list when the external_list is considered as input in the Improving_method.
Improve_individuals_paral executes the sequential procedure on the corresponding local lists. Then, in Step 5 of Algorithm
1, each processor improves its own local_population_list, with a length equal to M0 and, as a consequence, the individuals
may be substituted by solutions which dominate them and new points may be included in the local_external_list in case
indeterminate individuals are found.
On the contrary, in Step 8 of Algorithm 1, each processor applies the improving method to the local_external_list (with
length equal to M0) just sent by P0. Notice that the received individuals belong to the local_external_list of P0, which
includes, at this moment, the most preferable solutions of all the local external lists. Once all the individuals have been
optimized, they are sent back to processor P0 by using the proposed communication model. If stg < stgmax, the selection
procedure carried out by the receiver processors will maintain the non-domination individuals. On the contrary, if
stg ¼ stgmax, processor P0 will join the auxiliary_external_list to the received improved individuals, and will apply a selec-
tion procedure, where only the M most preferable individuals are maintained. Finally, P0 will directly send the whole aux-
iliary_external_list to each processor, which becomes their new local_external_list.
� Update_local_external_list: After the previous procedure, the local_population_list may contain individuals which deserve

to be included in the local_external_list. Then, similar to the sequential version, the local_external_list is updated by copy-
ing the non-dominated individuals of the local_population_list to it. Of course, this implies that the points in the
local_external_list dominated by the new ones have to be removed. Finally, a selection procedure is carried out over
the local_external_list, where the M most preferable solutions are chosen.
� Compose_pareto: The solution provided by the algorithm must include M individuals. If the number of individuals in the

auxiliary_external_list reaches this value, the set offered as an approximation of the Pareto-set will be the one kept in that
list. Otherwise, the local population lists are sent to P0 using the hierarchical tree communication schema explained
before, which joins these lists to the auxiliary_external_list, and the M most preferable individuals will be offered as a
result.
Please cite this article in press as: A.G. Arrondo et al., Parallelization of a non-linear multi-objective optimization algorithm: Application to
a location problem, Appl. Math. Comput. (2014), http://dx.doi.org/10.1016/j.amc.2014.08.036
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4. Experimental analysis

To show the applicability of FEMOEA-Paral, we have used it to solve a hard-to-solve competitive facility location (and
design) problem. In particular, we revisit the bi-objective problem described in [10] which, for the sake of completeness,
is briefly described in Section 4.1.

4.1. A bi-objective planar franchisor–franchisee facility location and design problem

A franchise wants to increase its presence in a given geographical region by opening one new facility. Both the franchisor
(the owner of the franchise) and the franchisee (the actual owner of the new facility to be opened) have the same objective:
maximizing their own profit. However, the maximization of the profit obtained by the franchisor is usually in conflict with
the maximization of the profit obtained by the franchisee, as we will see. In the model, the demand is supposed to be inelastic
(fixed) and concentrated at some demand points, which split their buying power among all the facilities proportionally to the
attraction they feel for them (see [13]). The attraction (or utility) function of a customer towards a given facility depends on
the distance between the customer and the facility as well as on other characteristics of the facility which determine its
quality.

The following notation will be used throughout this paper. The variables of the new facility (i.e., the variables of the prob-
lem) are denoted by nf ¼ ðx;aÞ, where x represents the location of the new facility, x ¼ ðx1; x2Þ, and a its quality (a > 0Þ. Let q
be the index of demand points, q ¼ 1; . . . ; qmax, and r the index of existing facilities, r ¼ 1; . . . ; rmax. pq is the location of the qth
demand point; wq refers to the demand (or buying power) at pq; efr is the location of the rth existing facility; dqr is the dis-
tance between pq and efr; and aqr is the quality of efr as perceived by pq. With the previous notation, aqr=gqðdqrÞ is the attrac-
tion that pq feels for efr , where gqð�Þ is a non-negative non-decreasing function. Furthermore, let cq be the weight for the
quality of the new facility as perceived by pq, and dqx be the distance between pq and the new facility nf. Then cqa=gqðdqxÞ
gives the attraction that pq feels for nf. Finally, let k be the number of existing facilities that are part of the franchise (the
first k of the rmax facilities are assumed to be in this category, 0 < k < rmax). From the previous assumptions, the market share
attracted by the franchisor is
Please
a loca
MKðnf Þ ¼
Xqmax

q¼1

wq

cqa
gqðdqxÞ þ

Pk
r¼1

aqr

gqðdqr Þ
cqa

gqðdqxÞ þ
Prmax

r¼1
aqr

gqðdqr Þ

:

We assume that the operating costs for the franchisor pertaining to the new facility are fixed. In this way, the profit
obtained by the franchisor is an increasing function of the market share that it captures. Thus, maximizing the profit
obtained by the franchisor is equivalent to maximizing its market share. This will be the first objective of the problem.

The second objective of the problem is the maximization of the profit obtained by the franchisee, to be understood as the
difference between the revenues obtained from the market share captured by the new facility minus its operational costs.
The market share captured by the new facility (franchisee) is given by
mkðnf Þ ¼
Xqmax

q¼1

wq

cqa
gqðdqxÞ

cqa
gqðdqxÞ þ

Prmax
r¼1

aqr

gqðdqr Þ
and the profit is given by the following expression,
pðnf Þ ¼ Fðmkðnf ÞÞ � Gðnf Þ;
where Fð�Þ is a strictly increasing function which determines the expected sales (i.e., income generated) for a given market
share mkðnf Þ, and Gðnf Þ is a function which gives the operating costs of a facility located at x with quality a. In our compu-
tational studies we have considered F to be linear and G to be separable, in the form Gðnf Þ ¼ G1ðxÞ þ G2ðaÞ, where
G1ðxÞ ¼

Pqmax
q¼1 UqðdqxÞ, with UqðdqxÞ ¼ wq=ððdqxÞ/q0 þ /q1Þ, /q0;/q1 > 0, and G2ðaÞ ¼ e

a
a0
þa1 � ea1 , with a0 > 0 and a1 given values

(other possible expressions for Gðnf Þ can be found in [8]).
The problem considered is
max MKðnf Þ;
max pðnf Þ;
s:t: dqx P dmin

q 8q;

a 2 ½amin;amax�;
x 2 FR � R2;

8>>>>>><
>>>>>>:

ð2Þ
where the parameters dmin
q > 0 and amin > 0 are given thresholds, which guarantee that the new facility is not located over a

demand point and that it has a minimum level of quality, respectively. The parameter amax is the maximum value that the
quality of a facility may take in practice. By FR we denote the region of the plane where the new facility can be located. Notice
that (2) is a particular case of (1), in which y ¼ nf ; f 1ðyÞ ¼ �MKðnf Þ; f 2ðyÞ ¼ �pðnf Þ and the feasible set S is given by the con-
straints in (2).
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4.2. Computational results

All the computational studies have been run in a cluster with 18 nodes. Each node has 16 cores (Intel Xeon E5 2650),
64 GB of shared memory and 128 GB of solid-state drive. In total, 288 cores, 1151 GB of memory and 2304 GB of SSD. In this
work, each instance has been solved with P ¼ 1;2;4;8;16;32;64 processors. The executions with P ¼ 1;2;4;8;16 processors
were executed in a single node, selecting in each case a number of cores equal to P. The studies with 32 processors were run
by using 2 nodes and 16 cores per node. Finally, for P ¼ 64;4 nodes were selected with 16 cores per node. The interconnec-
tion networks are Infiniband and Ethernet.

In order to have an overall view of the performance of the algorithm, different types of problems have been generated,
varying the number qmax of demand points, the number rmax of existing facilities and the number k of those facilities belonging
to the chain. The settings used were (qmax = 25, 50, rmax = 2, k = 1), (qmax = 25, 50, rmax = 5, k = 1, 2) and (qmax = 25, 50, rmax = 10, k =
2, 4). For every setting, one instance was generated by randomly choosing the parameters of the problems uniformly within
pre-defined intervals (see [10]). This set of ten problems can be downloaded from http://www.um.es/geloca/gio/AMC-

testproblems.zip. The number of points selected to approximate the Pareto-front was set to
M ¼ 400;800;1600;3200;6400. To counteract the randomness effect, each problem has been executed 10 times and average
values have been computed.

The effectiveness has been tested, on the one hand, by checking whether the points in the solution set offered by FEM-
OEA-Paral approximating the efficient set are certainly efficient points (or are very close to efficient points). To this aim, sim-
ilar to what was done in [22] with the sequential version, we check whether the solution points are included in the
corresponding solution boxes offered by the interval branch-and-bound method iB&B described in [10]. On the other hand,
for measuring the goodness of an approximation to the whole Pareto-front, the so-called hypervolume indicator [32] has also
been computed. It measures the hypervolume of the portion of the criterion space that is weakly dominated by the approx-
imation set (see Fig. 2-left). The higher the hypervolume, the better the approximation. In order to measure this quantity, a
reference point that is dominated by all points is needed (see point RP in Fig. 2). For a given problem, the same reference
point has to be used for all the algorithms and all the runs. In our computational studies, we have considered the points
of all the approximation sets of the Pareto-front together (for fixed values of P and M we solve each problem 10 times, thus
for every problem we have 350 approximation sets), and we have used as reference point the one whose lth component is
the maximum of all the lth components of those points. It is an approximation of the Nadir Point.

For each particular problem j (j ¼ 1 . . . ;10), iB&B offers as a solution a list of boxes (multi-dimensional intervals) whose
union contains the complete efficient set, and their images the corresponding Pareto-front. To compute the hypervolume of
that solution, the upper-right and lower-left corners of the boxes in the image space are obtained (see Fig. 2-right). Those
points form two approximation sets. An interval ½lowHj;uppHj� which contains the exact hypervolume of the true Pareto-
front can be obtained as follows. Its lower bound lowHj is the hypervolume obtained with the set composed by the
upper-right corners of the boxes and its upper bound uppHj is the hypervolume obtained with the set composed of the
lower-left corners. It is important to mention that, prior to the computation of those hypervolumes, dominated points are
removed from each set. For the sake of brevity, the particular intervals obtained for each problem are not shown. But in order
to have a general overview, the averages of the lower and upper limits for the whole set of ten problems have been com-
puted, ½lowH;uppH� ¼ ½361:9153;364:0888�. The average computing time spent by iB&B at solving the instances is 23:5
hours.

Notice that the hypervolume becomes larger as the number of points approximating the Pareto-front increases. In this
sense, the behavior of both FEMOEA and FEMOEA-Paral when the number of points approximating the Pareto-front, M,
increases has been studied.

It is worth mentioning that FEMOEA-Paral has approximated the Pareto front with 100% success, i.e., in all the runs and
for all the problems, all the points were included in the corresponding boxes offered by iB&B. Furthermore, the hypervolume
values have always been included in the interval ½lowHj;uppHj� for any particular instance j, j ¼ 1; . . . ;10. As expected, it can
be observed (see Table 1) that the hypervolume increases with the number of points M in the Pareto-front. Besides, the
hypervolume obtained by the parallel version is similar to the one obtained by the sequential method. This has been a chal-
lenge, since the sequential version has global control over both the population and the external lists, whereas the parallel
Fig. 2. Computation of the hypervolume value for an approximation set (left) and approximation sets considered for the iB&B algorithm (right).
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Table 1
Average results obtained by FEMOEA grouped according to the values of M and P.

P M = 400 M = 800 M = 1600 M = 3200 M = 6400

Hyper SD Eff Hyper SD Eff Hyper SD Eff Hyper SD Eff Hyper SD Eff

1 363.0677 0.0073 1007 363.4107 0.0023 3528 363.5803 0.0005 14532 363.6609 0.0001 65219 363.6997 0.0000 343761
2 363.1025 0.0064 1.41 363.4256 0.0014 1.48 363.5852 0.0004 1.72 363.6626 0.0001 2.05 363.7003 0.0000 2.66
4 363.0996 0.0035 1.69 363.4261 0.0020 1.80 363.5851 0.0006 2.24 363.6626 0.0002 2.86 363.7003 0.0000 4.12
8 363.1018 0.0050 1.60 363.4264 0.0016 1.66 363.5846 0.0007 2.60 363.6625 0.0002 3.79 363.7003 0.0000 4.99
16 363.1018 0.0060 1.18 363.4252 0.0023 1.43 363.5850 0.0004 2.02 363.6624 0.0002 2.98 363.7003 0.0000 3.92
32 363.1029 0.0062 0.71 363.4257 0.0014 0.92 363.5851 0.0005 1.23 363.6625 0.0001 1.83 363.7002 0.0000 2.66
64 363.1029 0.0042 0.37 363.4256 0.0018 0.48 363.5846 0.0004 0.65 363.6623 0.0002 0.96 363.7002 0.0000 1.46
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version carries out some decisions based on local knowledge. The designed selection procedure has helped to counteract this
drawback.

To measure the computational effort in obtaining the solutions, the efficiency measure, Eff , which estimates how well-
utilized the processors are in solving the problem, has been computed. The efficiency of a parallel version (run over P pro-
cessors) with respect to the sequential one is computed as: Eff ðPÞ ¼ Tð1Þ

P�TðPÞ, where Tð1Þ is the execution time on a uni-processor
and TðPÞ is the execution time on P processors. Notice that the ideal efficiency is 1.

Furthermore, the scalability of the parallel version has also been tested. Broadly speaking, this concept can be understood
as the ability of a system, algorithm, or process, to handle a growing amount of work in a capable manner or its ability to be
enlarged to accommodate that growth. The use of performance metrics such as the efficiency allows us to determine
whether an algorithm is scalable: an algorithm that scales well will be able to maintain or even increase its level of perfor-
mance or efficiency when tested on more demanding instances.

For the sake of brevity, the particular results for each particular problem are not shown; but in order to have a general
overview, the average efficiency results for the different values of P and grouped them according to the value of M are
detailed (see columns Eff in Table 1). Notice that for P ¼ 1, the computing time (in seconds) has been depicted instead.
The average hypervolume and the corresponding average of the standard deviations have also been included. To be more
precise, for fixed M and P values, for each of the 10 problems (each of them executed 10 times) we compute its mean hyper-
volume and its corresponding standard deviation ðHyperj; SDjÞ; j ¼ 1 . . . ;10. The values in Table 1 are Hyper ¼

P10
j¼1Hyperj=10

and SD ¼
P10

j¼1SDj=10.
Observe that, as expected, Hyper is always included in the interval ½lowH;uppH�. Notice also that the higher the M, the

smaller the standard deviation. This is not surprising, since the more points in the set approximating the Pareto-front, the
better the approximation is, the smaller the difference between the approximation sets can be, and the smaller the difference
in their corresponding hypervolume is. Concerning efficiency, it increases up to 8 processors, and then it starts to decrease.
Even so, promising results have been obtained and values very superior to the ideal case have been achieved in most of the
cases. Furthermore, FEMOEA-Paral scales, since the efficiency values improve as the computational load of the problem to be
solved increases (with the value of M).

The behavior of the parallel version and hence, the obtained efficiencies, are mainly due to: (i) the distribution of the lists
among the available processors, which reduces the cache misses and hence, the memory access time; and (ii) the overheads
imposed by the exchange of information among processors, which takes place at the Select_individuals_paral (list) method.
These conclusions have been inferred from a study conducted by using the TAU (Tuning and Analysis Utilities) Performance
System [18] and PAPI (Performance Application Programming Interface) [27]. It is important to mention that the tendencies
observed in Table 1, are not a consequence of computing average values. On the contrary, the behavior is similar for all the
particular instances. That is why only the results obtained for a particular problem (the one with setting ð50;10;4Þ) will be
shown next, when it is analyzed using TAU Performance System.

One of the key points studied using TAU and PAPI has been the total cache misses obtained by both FEMOEA (P ¼ 1) and
FEMOEA-Paral (P > 1), for every value of M. Fig. 3 depicts those results for the instance ð50;10;4Þ. As can be seen, given a
value of M, the number of cache misses decreases exponentially for up to 8 processors. From that point on, such a decrement
is not as important, but much slower. Besides, notice that the larger the value of M, the higher the number of cache misses of
the sequential version and therefore, the greater the time savings obtained by the parallel versions due to the reduction of
the cache faults. Of course, these facts are clearly related to the efficiencies obtained, which are superior to the ideal case and
higher as the value of M increases.

The computing time associated to the Select_individuals_paral (list) method has also been studied using TAU. The behavior
of such a method and hence, the conclusions that can be inferred, can be extrapolated to any input list (with any length). Then,
for the sake of brevity, only a particular example will be shown. More precisely, the case with setting ð50;10;4Þ;M ¼ 3200 and
list referring to local_population_list, will be considered. Fig. 4 shows the computing time employed by each processor (named
node in the figure) to execute this method, for that particular instance and when P ¼ 2;4;8;16. The graphics associated with
P ¼ 32;64 have been omitted to reduce the length of the paper, although the same tendency was observed. Furthermore,
notice that some additional figures are provided, i.e. the maximum, mean and minimum execution times spent by the pro-
cessors are shown. The standard deviation is also depicted. As can be seen, there exists a great imbalance in the computing
Please cite this article in press as: A.G. Arrondo et al., Parallelization of a non-linear multi-objective optimization algorithm: Application to
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Fig. 3. Setting ð50;10;4Þ. Average total cache misses obtained by FEMOEA and FEMOEA-Paral with 400, 800, 1600, 3200and 6400 points in the Pareto-front.
(a) On the left in linear scale, (b) on the right in logarithmic scale.

Fig. 4. Setting ð50;10;4Þ. Computational time employed in Select_individuals_paral (local_population_list) with P ¼ 2;4;8;16 and M ¼ 3200.
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times associated to each processor. Bear in mind the communication tree schema to understand the reasons behind such an
imbalance. Following with the notation previously defined in this paper, processors with an odd identification number will
initially be receivers while the ones with an even number will be senders. Processor P0 (node 0 in the figure) represents
the collector. As expected, it is always active and hence, its computing time is always the maximum one. Besides, the number
of idle processors increases with the value of P. These results clearly show that the selection procedure is a bottleneck and
provokes a reduction in the efficiency of the parallel version. Nevertheless, notice that, in spite of the time costs (due to com-
munications and waiting times imposed by this method), good efficiency values are obtained. This is because these overheads
are compensated by the time savings associated to the memory accesses previously commented. Notice that, when P > 8,
those savings are not as spectacular and therefore, the effects of both communication and waiting times have a greater influ-
ence on the efficiency. This fact explains the existence of an inflexion point in the efficiency values when P ¼ 8, i.e. the effi-
ciency increases for up to 8 processors and then it begins to decrease. The selection procedure was designed to be able to
maintain the effectiveness of the sequential version; other decisions which may improve this deficiency may in turn reduce
the quality of the obtained solutions.
Please cite this article in press as: A.G. Arrondo et al., Parallelization of a non-linear multi-objective optimization algorithm: Application to
a location problem, Appl. Math. Comput. (2014), http://dx.doi.org/10.1016/j.amc.2014.08.036
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5. Conclusions

To deal with hard-to-solve multi-objective optimization problems, as most competitive location problems are, a parallel
version of FEMOEA, called FEMOEA-Paral, has been developed and analyzed. A comprehensive computational study has
shown that FEMOEA-Paral maintains the effectiveness of the sequential version, i.e. both versions approximate the Par-
eto-front with 100% success in all the instances, their hypervolume values are always included in the interval provided
by iB&B and they both obtain similar hypervolume values for any particular instance. The maintenance of the effectiveness
values is made possible thanks to the implemented selection procedure, which allows us to concurrently choose the most
preferable solutions. The efficiency of the parallel version has also been tested. The distribution of the computational load
carried out by FEMEOA-Paral allows us to highly accelerate the sequential computational times, in such a way that FEMO-
EA-Paral has been able to obtain super efficiency values. Additionally, the scalability of the parallel version has also been
shown by solving instances with a larger computational burden.

Efficiency results have been analyzed by using TAU. It can be concluded that the parallelization overhead increases with
the number of processors. Furthermore, it was found that whereas the distribution of the population among the processors
saves CPU time as compared to the sequential version (the number of cache misses is smaller), the opposite holds with the
selection procedure, which acts as a bottleneck in the algorithm. New selection procedures, able to maintain the effective-
ness, but without causing load imbalance, should be researched. Additionally, methods to reduce the cache misses for the
sequential as well as for the parallel version should be studied. An analytical study should also be carried out to try to char-
acterize the improvements that can be achieved with the parallelization.
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