
2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

A Cost-Effective Deadline-Constrained
Dynamic Scheduling Algorithm for Scientific

Workflows in a Cloud Environment
Jyoti Sahni1 and Deo Prakash Vidyarthi2

School of Computer and Systems Sciences,
Jawaharlal Nehru University, New Delhi-110067

jyoti92_scs@jnu.ac.in1, dpv@mail.jnu.ac.in2
Tel No. +91 11 26704738

Abstract— Cloud Computing, a distributed computing paradigm, enables delivery of IT resources over the Internet and follows the
pay-as-you-go billing model. Workflow scheduling is one of the most challenging problems in Cloud computing. Although, workflow
scheduling on distributed systems like Grids and Clusters have been extensively studied, however, these solutions are not viable for
a Cloud environment. It is because, a Cloud environment differs from other distributed environment in two major ways: on-demand
resource provisioning and pay-as-you-go pricing model. Thus, to achieve the true benefits of workflow orchestration onto Cloud
resources novel approaches that can capitalize the advantages and address the challenges specific to a Cloud environment needs to
be developed. This work proposes a dynamic cost-effective deadline-constrained heuristic algorithm for scheduling a scientific
workflow in a public Cloud. The proposed technique aims to exploit the advantages offered by Cloud computing while taking into
account the virtual machine performance variability and instance acquisition delay to identify a just-in-time schedule of a deadline
constrained scientific workflow at lesser costs. Performance evaluation on some well-known scientific workflows exhibit that the
proposed algorithm delivers better performance in comparison to the current state-of-the-art heuristics.

Index Terms— Cloud Computing, Quality of Service (QoS), Resource provisioning, Scheduling, Scientific workflows.

—————————— ——————————

1 INTRODUCTION

Scientists in different research domains such as physics, bio-informatics, earth science and astronomy run increas-

ingly complex large scale scientific applications for simulation and analysis of the real-world activities. Many of such large

scale applications are usually constructed as workflows [1]. A workflow is a loosely coupled coarse-grained parallel appli-

cation that consists of a set of computational tasks linked through control and data dependencies. Scientific workflows may

vary in size from a few tasks with limited resource needs to millions of tasks requiring tens of thousands of processing hours,

terabytes of storage and high bandwidth network resources. Such complex workflows demand a high-performance compu-

ting environment and often it is desirable to distribute its tasks amongst multiple computing nodes in order to complete the

work in a reasonable time. Traditionally, developers of scientific applications have used local workstations, supercomputers,

clusters and grids platforms for running such workflows. Each of these platforms offer various trade-offs in terms of usabil-

ity, performance and cost. Many Grid projects such as Pegasus [2], ASKALON [3] and GrADS [4] have designed workflow

management systems to define, manage and execute workflows on the Grid. Cloud computing, has recently emerged as a

promising execution platform for huge and complex scientific applications. Many studies [5], [6], [7], [8], [9], [10] have in-

vestigated the use of Cloud for scientific applications and have concluded that it offers reasonably good solutions in terms

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

of performance and cost. However, with the emergence of this new computing paradigm, novel scheduling approaches that

are able to capitalize the advantages while addressing the challenges specific to a Cloud environment needs to be developed.

Cloud provides a utility-oriented computing model that enables delivery of IT resources over the Internet and fol-

lows the pay-as-you-go billing model where users are charged based on their resource consumption [11]. Cloud ser-

vices are majorly categorized as: Infrastructure as a service (IaaS), which includes raw infrastructure and associated

middleware; Platform as a service (PaaS), which includes APIs for developing applications on an abstract platform

and Software as a service (SaaS) that provides support for remote software services. PaaS and SaaS based solutions are

presently not considered as feasible alternatives for executing scientific workflows. This is because PaaS based solu-

tions involve the overhead of porting legacy applications to new platforms whereas scientific computing SaaS services

are currently rarely available for usage [7]. IaaS Cloud on the other hand, offers several cost and performance related

benefits for executing scientific applications as compared to traditional distributed execution environments like grids

and clusters [6], [10]. Some of these benefits are as follows.

a) Infinite economical resources: Clouds give an illusion of unlimited computing resources, with the help of virtual-

ization concept, which may be provisioned on demand in a reasonable time frame and charged on a pay-per-use basis.

Cloud platforms, thus, offers an alternative for executing scientific applications in which resources are no longer hosted

by the research institutions but leased from big data centres as and when required. Outsourcing of scientific computa-

tion to Cloud platforms may not only help in potentially lowering the financial burden of resource over-provisioning,

but also in reducing the effort and cost of operating, maintaining and periodically upgrading local computing infra-

structures.

b) Direct on-demand provisioning: In grids and clusters, user specifies the amount of time and the resources required

for a computation and the responsibility of resource allocation is delegated to a batch scheduler. Thus, requests for

resources are queued and served in accordance with the scheduling policies. The allocation of resources and binding

of jobs to these resources is tied together and is out of user's control. In Cloud, on the other hand, user directly provi-

sions required resources to schedule their computations using a user-controlled scheduler. This helps in decreasing

scheduling overheads and hence significantly improves the performance.

c) Elasticity: Cloud allows users to acquire and release the resources on demand. This allows the applications to

easily grow or shrink its resource pool in accordance with the resource needs. Workflows usually have multiple stages,

where the number of resources required for each stages may vary. Cloud-based workflow applications, may thus be

allocated the exact amount of resources as and when required instead of reserving a fixed number of resources in

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

advance. This not only ensures efficient resource utilization but also results in a good cost savings for the user.

Although, Cloud has many advantages there still remains certain specific issues which needs to be addressed by the

prospective scheduling policies. Some of these issues are discussed below.

a) Performance variation in Cloud: Virtualization of resources, shared nature of infrastructure and the heterogeneity

of the physical resources in Cloud results in performance variability. Schad et al. [12] identified an overall CPU per-

formance variability of 24% on Amazon’s EC2 Cloud. Performance variability may have an adverse effect when dead-

line constrained workflows are scheduled on Clouds. Scheduling policies generally rely on the estimation of task

runtimes on different VMs. This estimation is done based on the VMs computing capacity. If this capacity is always

assumed to be optimal and the actual task execution takes longer time, the task will be delayed. This delay may then

have a cascading effect on the child tasks causing the application to miss its deadline.

b) Instance acquisition and termination delay: When a VM is leased, it requires an initial boot time for proper initiali-

zation before it is made available to the user. Similarly, when a VM is released it needs some time to shut down. Long

start-up time may result in delays leading to missing of deadlines and therefore needs to be accounted for in the

schedule generation. On the other hand, VM termination delays do not adversely affect the application deadlines

though may incur little extra cost on the user.

 c) Heterogeneous IaaS resources: When leasing a VM from an IaaS provider, the user has the facility to choose different

machines with varying configurations and prices. Any scheduling solution needs to make appropriate provisioning

decisions considering the performance and cost trade-off.

The above discussed advantages and issues, dictate the development of innovative resource scheduling algorithms

tailored for a Cloud environment which may generate cost and performance effective solutions for scientific workflow

execution. Workflow execution in a Cloud environment involves two main stages. The first stage is the resource pro-

visioning phase which identifies and provisions the computing resources required to run the tasks. In the second stage,

a schedule is generated and each task is mapped onto the appropriate computing resources. The decisions taken at

each of these stages are guided by the task’s precedence constraints and performance requirements as specified by the

user. Most of the previous works have focussed on planning workflows on distributed systems e.g. grids and clusters,

confining only on the scheduling phase. This is because, grid and cluster environments provide a static pool of re-

sources readily available to execute the tasks and whose configuration is known in advance. Cloud environment, how-

ever, requires that both the above-mentioned stages are addressed and combined in order to produce efficient execu-

tion plans. Another important characteristic of previous works developed for grids and clusters is that mostly they

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

focus on minimizing the makespan (execution time) of the workflows. Though this is well suited for such environ-

ments, however, in Cloud an important parameter besides execution time is the economic cost. Faster resources are

usually costlier and therefore there is a time-cost trade-off in selecting appropriate services. Hence, scheduling policies

developed for Clouds should assess the various time/cost alternatives so as to deliver time effective solutions while

avoiding unnecessary costs.

This work presents a dynamic cost-minimization deadline constrained heuristic for scheduling scientific applica-

tions in a public Cloud environment. The proposed technique aims to exploit the advantages offered in Cloud envi-

ronment while taking into account the VM performance variability and instance acquisition delay to identify a just-in-

time schedule of a scientific workflow which is able to meet its deadline at lesser costs.

The rest of this paper is organized as follows. Section 2 presents the scientific workflow application model and the

architecture for workflow execution on elastic resources. Problem definition is presented in section 3, followed by the

proposed scheduling algorithm and its explanation in section 4. Experiment based performance evaluation is presented

in section 5. Section 6 reviews the related work and section 7 concludes the work.

2 ARCHITECTURE FOR WORKFLOW EXECUTION IN CLOUD

This section explains the application model, Cloud resource model and the overall architecture of the computing framework

for workflow execution in Cloud, used for this study.

2.1 Application Model

A workflow application W = (T, E) is modelled as a Directed Acyclic Graph (DAG) where 𝑇 = { 𝑡1 , 𝑡2, … , 𝑡𝑛}, the set of verti-

ces represents tasks and E is a set of directed edges representing data or control dependencies between the tasks. A depend-

ency 𝑒𝑖𝑗 is a precedence constraint of the form (𝑡𝑖 , 𝑡𝑗), where, 𝑡𝑖 , 𝑡𝑗 ∊ 𝑇, and 𝑡𝑖 ≠ 𝑡𝑗 . This implies that task 𝑡𝑗 (child task) can

start only after task 𝑡𝑖 (parent task) has finished its execution and the associated data dependencies are transferred to 𝑡𝑗.

Thus, a child task cannot execute until all its parent tasks has finished execution and the required dependencies, both data

and control, obliged.

 6

4

8

4

5 2

4

 3

t2

6

6
t1 t6

t5

t8 t3

t9

4

t4 t7

Fig 1. A Sample Workflow

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

A deadline D is defined as the time limit specified by the user for the execution of the workflow. A sample workflow is

shown in figure 1. Each node represents a task and the edges show the data transfer time between the tasks.

2.2 Cloud Resource Model

The Cloud model, assumed in this work, consists of virtualized resources offered by an IaaS Cloud service provider. The

services include computation services e.g. Amazon Elastic Cloud Compute (EC2) [13] and storage services e.g. Amazon

Elastic Block Store [14] used as a local storage device for storing the input/output files. All computation and storage services

are assumed to be in the same data centre or region so that average bandwidth between computation services is roughly

equal. Further, computation services are offered in form of different types of virtual machines (VMs). These VM types have

varied configurations for CPU type, memory size and are available at different prices. It is assumed that there is no limitation

on the number of VM instances leased (used) by an application. Also, when a VM is leased, it requires an initial boot time

for its proper initialization before it is made available to the user. Similarly when a VM is released it again requires some

time for proper shutdown. The pricing model is based on a pay-as-you-go billing scheme similar to the current commercial

Clouds and the users are charged for the number of time intervals they use (lease) a VM, even if the leased VMs have not

been completely used in the last time interval. The time interval is specified by the Cloud provider. For example Cloud pro-

viders such as Amazon, charge the users based on the time interval of one hour. Thus, even if a VM is used only for few

minutes, one has to pay for the whole hour. However, some service providers like Google Cloud Platform [24], have recently

started with short time intervals and have per minute pricing model with a minimum of 10 minutes billing period. Since the

internal data transfer is free in most Cloud environments, the data transfer cost is assumed to be zero. Further, though real

Cloud providers charge for the storage services used for storing the input/output data files based on the allocated volume,

they are not accounted for in the proposed model since these costs are independent of the scheduling algorithms. In the

Cloud resource model, VM type (𝑉𝑀𝑣) is defined by a two-tuple {(𝐸𝑇𝑡𝑖
)𝑣, 𝐶𝑣} which specifies its estimated processing time

for each task 𝑡𝑖 and cost per time interval respectively. It is assumed that the estimated processing time for the tasks on

different types of VMs can be achieved using some existing performance estimation techniques [15] (e.g. analytical model-

ling [16], empirical modelling [4] and historical data [18], [19]). The cost of running a task 𝑡𝑖 on a VM of type 𝑉𝑀𝑣, is calcu-

lated as ⌈
 (𝐸𝑇𝑡𝑖

)
𝑣

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
⌉ × 𝐶𝑣. Further, the data transfer time 𝑇𝑇(𝑒𝑖𝑗) between tasks scheduled on different VMs is calculated

as
 𝑑𝑡𝑖

𝛽
, where 𝑑𝑡𝑖

 is the size of the output data file to be transferred from 𝑡𝑖 to 𝑡𝑗 and 𝛽 is the average bandwidth within the

Cloud datacentre. The only exception is when the parent task 𝑡𝑖 and child task 𝑡𝑗 both are scheduled on the same VM, in

which case, the data transfer time 𝑇𝑇(𝑒𝑖𝑗) becomes zero.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

Fig 2. Computing platform model for executing scientific workflows on Cloud resources

2.3 Computing Platform Model

Figure 2 depicts the computing platform model for workflow execution on Cloud resources. The computing platform, used

in this study, is similar to the one used in [20]. Since Cloud requires users to provision the appropriate amount of resources

to run their applications (by identifying the resource type and the lease period), two main stages are involved when planning

the execution of a workflow in a Cloud environment. In the first stage resource provisioning is done which involves identi-

fying and provisioning the appropriate computing resources for executing workflow tasks. The second stage involves gen-

erating a task execution schedule by mapping tasks onto appropriate resources.

Workflow Management System

Resource Provisioning

Resource Capacity
Estimation Module

Resource
Procurement Module

Workflow Scheduling
Module

Execution Manager

IaaS Cloud Resource
Provisioning System

Create VM

Destroy VM

Storage

Compute Cloud

Allocate VM

VM VM VM VM

PM PM PM

Storage Cloud

Storage Storage

Workflow, deadline, resource specifications

User

IaaS Cloud

Release VM

A user submits a workflow along with the associated QoS requirements e.g. deadline constraint and resource specifications

to the workflow management system (WMS). The deadline constraint specifies the time limit and the resource specifications

describe the resource requirements (compute, memory, I/O) of the applications. Given these inputs, the WMS would auto-

matically identify and provision the required resources, schedule tasks onto the provisioned resources and manage the

workflow execution. In order to reduce the cost of running the application, the WMS acquires the resources as and when

they are needed and releases them immediately after use. WMS consists of three main modules: Resource Provisioning Module,

Workflow Scheduling Module and Execution Manager. Resource Provisioning module consists of two sub-modules: Resource

Capacity Estimation Module and Resource Procurement Module. Resource Capacity Estimation module analyses the workflow

structure to determine the amount of resources required. The Resource Procurement Module negotiates with the IaaS re-

source provisioning system to acquire the identified amount of resources. The Workflow Scheduling Module, in coordina-

tion with the Execution Manager, identifies the mapping between the provisioned resources and the tasks of the workflow.

The scheduled tasks are then executed by the Execution Manager. . The main difference between this computing model and

other traditional high performance computing models is that resource allocation is workflow driven and the resource set

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

size may vary during runtime.

3 PROBLEM DEFINITION

Resource provisioning and scheduling heuristics may have a number of objectives. The proposed work focusses on finding

a just-in-time schedule to execute a workflow on an IaaS Cloud such that total execution cost is minimized while meeting

the user defined deadline constraint. In order to identify a schedule bounded by the deadline, it needs to be first ascertained

if the user specified deadline is achievable. If it is not so, the scheduling problem would not have a feasible solution and

therefore the user needs to revise the deadline. Once it is ascertained that the deadline is achievable, the goal is to make an

appropriate scheduling decision for each task of the workflow within the given deadline at minimum possible cost. This

involves making three decisions at each decision stage, which are as follows.

Cheapest task-VM mapping: The first decision, called as the cheapest task-VM mapping, is to determine the cheapest instance

type for each task waiting to be scheduled.

Cheapest task-VM mapping = {(𝑡𝑖 → 𝑉𝑀𝑣)}

Provisioning Plan: The second decision, called as the Provisioning Plan, is to identify the number of instances of each VM

type required at different stages of the workflow execution based on the status of the running tasks and the Cheapest task-

VM mapping of the waiting tasks. Each VM, 𝑣𝑘 , added to the resource pool of the workflow, has a 𝑡𝑦𝑝𝑒 associated with it

besides its start time 𝑠𝑡𝑘 and end time 𝑒𝑡𝑘.

VM Pool ={𝑣𝑘 , 𝑡𝑦𝑝𝑒(𝑣𝑘), 𝑠𝑡𝑘 , 𝑒𝑡𝑘}

Scheduling Plan: The third decision called as the Scheduling Plan, is to determine the VM instance 𝑣𝑘 of the resource pool on

which a task 𝑡𝑖 is to be scheduled with its estimated start time and end time.

Schedule = {𝑡𝑖 , 𝑣𝑘 , 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒}

It may be noted that each provisioned VM needs to complete the transfer of all the output data files obtained by executing

the tasks scheduled on it, to the local storage of the VMs on which the corresponding children tasks are to be scheduled,

before it is deprovisioned. However, since Cloud providers offer storage services that persist independent of VM lifetime

(e.g. EBS [14]), the VMs on which a child task is to be executed need not be active when the input data files are being trans-

ferred to the corresponding storage volume. Further, due to performance variation and other delays, the tasks may not

execute strictly as per the schedule. Therefore each task 𝑡𝑖 , has an associated actual start time (𝐴𝑆𝑇) and an actual finish time

(𝐴𝐹𝑇) being maintained by the Execution manager. The scheduling algorithm needs to monitor the time difference between

the actual and the estimated schedules in order to make appropriate decisions for the subsequent unscheduled tasks.

Based on the above, the problem can formally be defined as follows. Find a schedule S for a workflow application W that

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

minimizes the total cost C of running the workflow and for which the total execution time (TET) does not exceed the work-

flow deadline D. It is thus an optimization problem as depicted in equation 1.

Minimize C = ∑ 𝐶𝑡𝑦𝑝𝑒(𝑣𝑘) ∗ ⌈(
𝑒𝑡𝑘−𝑠𝑡𝑘

𝑡𝑖𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
)⌉

|𝑉𝑀 𝑝𝑜𝑜𝑙|
𝑘=1 (1)

subject to TET ≤ D Where, TET= max
𝑡𝑖

{(𝐴𝐹𝑇(𝑡𝑖)}

4 THE PROPOSED WORKFLOW SCHEDULING ALGORITHM

The proposed algorithm is named as just-in-time (JIT-C) workflow scheduling algorithm for a Cloud environment, which

makes appropriate scheduling decisions just before the workflow tasks are ready for execution. In order to make appropriate

scheduling/provisioning decisions, in the event of performance variation, the proposed algorithm uses a monitor control

loop. Inside each loop, progress of running tasks is continuously monitored and resource provisioning/scheduling decisions

are made based on the most recent information.

In order to accommodate for the VM acquisition delay, the algorithm takes as input, the expected VM acquisition time and

makes the provisioning decisions accordingly. As discussed in section 1, VM termination delay does not adversely affect the

deadline constraint of the workflow. Moreover, service providers now offering short billing intervals the effect of termina-

tion delay on cost is greatly reduced and hence is not accounted for in the proposed algorithm.

This section first discusses the basic definitions used in this work before elaborating the proposed scheduling algorithm.

Finally, its operation is illustrated through an example.

Table 1 lists the notation used in the work.

Table 1. Notation
Symbol Meaning

VMset = {VM1,VM2, …VMm} Set of all VM types offered by the service provider

D User defined deadline of the workflow

ET (ti, VMv) Execution Time of task ti on VM type VMv

TT (eij) Data Transfer Time from task ti to tj

MET (ti) Minimum Execution Time of task ti

{tentry} Tasks without any parent

{texit} Tasks without any child

EST (ti) Earliest Start Time of task ti

EFT (ti) Earliest Finish Time of task ti

AST (ti) Actual Start Time of task ti

AFT (ti) Actual Finish Time of task ti

XST(ti) Expected Start Time of task ti

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

XFT (ti) Expected Finish Time of task ti

LST(ti) Latest Start Time of task ti

LFT(ti) Latest Finish Time of task ti

XET(ti,VMv)

Expected Execution Time of the tasks of the critical path starting at

 ti on VM type VMv

XIST (vk) Expected Idle Start Time of an active VM vk

VM_Pool_Status 5-tuple for each VM vk in the VM pool {(vk, type(vk), st, , XIST, et)}

Acquistiondelay Expected VM acquisition time

MET_W Minimum Execution Time of the Workflow

CLI (𝑣k) Current Lease Interval of VM 𝑣k

4.1 Basic Definitions

The definition of some of the basic terms, used in the model, are as follows.

a) 𝑀𝐸𝑇 (𝑡𝑖): Minimum Execution Time of a task 𝑡𝑖 is defined as the execution time of 𝑡𝑖

 on a VM instance type 𝑉𝑀𝑣 ∈

𝑉𝑀𝑠𝑒𝑡, which has the minimum execution time 𝐸𝑇 (𝑡𝑖, 𝑉𝑀𝑣) among all the available VM types. It is calculated as

given in equation 2.

 𝑀𝐸𝑇 (𝑡𝑖) = min
𝑉𝑀𝑣∈ 𝑉𝑀𝑠𝑒𝑡

{𝐸𝑇 (𝑡𝑖, 𝑉𝑀𝑣)} (2)

b) 𝐸𝑆𝑇 (𝑡𝑖): Earliest Start Time of a task 𝑡𝑖 is defined as the time at which 𝑡𝑖
 can start its execution, after all its prede-

cessor tasks are scheduled on the fastest VM types and associated data dependencies have been transferred to 𝑡𝑖
. It

is obtained as given in equation 3.

𝐸𝑆𝑇 (𝑡𝑒𝑛𝑡𝑟𝑦

) = 0

 𝐸𝑆𝑇 (𝑡𝑖) = max
𝑡𝑝∈𝑡𝑖′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

{𝐸𝑆𝑇 (𝑡𝑝) + 𝑀𝐸𝑇(𝑡𝑝) + 𝑇𝑇 (𝑒𝑝𝑖)}

c) 𝐸𝐹𝑇 (𝑡𝑖): Earliest Finish Time of a task 𝑡𝑖 is defined as in equation 4.

 𝐸𝐹𝑇 (𝑡𝑖) = 𝐸𝑆𝑇 (𝑡𝑖) + 𝑀𝐸𝑇(𝑡𝑖) (4)

d) 𝑋𝐹𝑇 (𝑡𝑖): Expected Finish Time of a task 𝑡𝑖 , scheduled on VM 𝑣𝑘 , is defined as in equation 5.

 𝐴𝑆𝑇(𝑡𝑖) + 𝐸𝑇 (𝑡𝑖 , 𝑡𝑦𝑝𝑒(𝑣𝑘)) , if 𝑡𝑖 is in execution

 max
𝑡𝑝∈𝑡𝑖′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

 {𝑋𝐹𝑇(𝑡𝑝) + 𝑇𝑇 (𝑒𝑝𝑖) } + 𝐸𝑇 (𝑡𝑖 , 𝑡𝑦𝑝𝑒(𝑣𝑘)) , if 𝑡𝑖 is waiting for execution

e) 𝑋𝑆𝑇 (𝑡𝑖): Expected Start Time of a task 𝑡𝑖
 is defined as the estimated time at which 𝑡𝑖 can start its execution after all

its predecessor tasks have been scheduled. It is calculated as in equation 6.

 𝑋𝐹𝑇 (𝑡𝑖) =
(5)

(3)

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

 𝑋𝑆𝑇(𝑡𝑒𝑛𝑡𝑟𝑦) = 𝑎𝑐𝑞𝑢𝑖𝑠𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦

 𝑋𝑆𝑇(𝑡𝑖) = max
𝑡𝑝∈𝑡𝑖′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

 {𝑋𝐹𝑇(𝑡𝑝) + 𝑇𝑇 (𝑒𝑝𝑖) }

f) 𝑋𝐼𝑆𝑇 (𝑣𝑘): Expected Idle Start Time of an active VM 𝑣𝑘 of the resource pool is the time at which 𝑣𝑘 is expected to

finish the execution of the most recent task scheduled on it. Thus, if 𝑡𝑝 is the most recent task scheduled on 𝑣𝑘 then

Expected Idle Start Time is obtained as in equation 7.

 𝐴𝑆𝑇(𝑡𝑝) + 𝐸𝑇 (𝑡𝑝, 𝑡𝑦𝑝𝑒(𝑣𝑘)) , if 𝑡𝑝 is in execution

 𝑋𝑆𝑇(𝑡𝑝) + 𝐸𝑇 (𝑡𝑝, 𝑡𝑦𝑝𝑒(𝑣𝑘)) , if 𝑡𝑝 is waiting for execution

g) 𝐿𝐹𝑇 (𝑡𝑖): Latest Finish Time of a task 𝑡𝑖
 is defined as the latest time at which 𝑡𝑖 can finish its execution such that all

the tasks are executed before the user defined workflow deadline D. It is calculated as in equation 8.

 𝐿𝐹𝑇(𝑡𝑒𝑥𝑖𝑡) = 𝐷

 𝐿𝐹𝑇(𝑡𝑖) = min
𝑡𝑐∈𝑡𝑖′𝑠 𝑐ℎ𝑖𝑙𝑑𝑒𝑟𝑛

 {𝐿𝐹𝑇 (𝑡𝑐) − 𝑀𝐸𝑇 (𝑡𝑐) − 𝑇𝑇 (𝑒𝑖𝑐) }

h) 𝐿𝑆𝑇 (𝑡𝑖): Latest Start Time of a task 𝑡𝑖
 is defined as the latest time at which 𝑡𝑖

 can start its execution such that all the

tasks are executed before the user defined workflow deadline D. It is obtained as in equation 9.

 𝐿𝑆𝑇(𝑡𝑖) = 𝐿𝐹𝑇(𝑡𝑖) − 𝑀𝐸𝑇(𝑡𝑖)

i) 𝑋𝐸𝑇 (𝑡𝑖 , 𝑉𝑀𝑣): Expected Execution Time of critical path (longest execution path) starting at 𝑡𝑖 on VM type 𝑉𝑀𝑣 is

defined as the total time it would take to execute the entire critical path starting at 𝑡𝑖
 on VM type 𝑉𝑀𝑣. It is calculated

as in equation 10.

 𝑋𝐸𝑇(𝑡𝑒𝑥𝑖𝑡 , 𝑉𝑀𝑣) = 𝐸𝑇 (𝑡𝑒𝑥𝑖𝑡, 𝑉𝑀𝑣)

 𝑋𝐸𝑇(𝑡𝑖 , 𝑉𝑀𝑣) = 𝐸𝑇 (𝑡𝑖, 𝑉𝑀𝑣) + max
𝑡𝑐∈ 𝑡𝑖

′𝑠 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
{ 𝑋𝐸𝑇(𝑡𝑐, 𝑉𝑀𝑣)}

j) 𝑀𝐸𝑇_𝑊: Minimum Execution Time of the Workflow is defined as its critical path length (longest execution path),

when all the tasks are executed on the fastest VMs. It is calculated as given in equation 11.

 𝑀𝐸𝑇_𝑊 = max
𝑡𝑖∈𝑊

(𝐸𝐹𝑇(𝑡𝑖)) (11)

k) CLI (𝑣𝑘): Current Lease Interval of a leased VM 𝑣𝑘 defines its current lease time span for which it will be charged.

Given the time at which 𝑣𝑘 is provisiond (𝑠𝑡𝑘), unit of time used for billing (time interval) and the index of its cur-

rent time interval(𝑛), CLI (𝑣𝑘) is calculated as given in equation 12.

CLI (𝑣𝑘) = [𝑠𝑡𝑘 , 𝑠𝑡𝑘 + 𝑛 × 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙] (12)

 𝑋𝐼𝑆𝑇 (𝑣𝑘) =

(6)

(7)

(8)

(10)

(9)

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

4.2 The Proposed Algorithm (JIT-C)

The pseudo code of the proposed JIT-C algorithm is listed as Algorithm 1. It begins by verifying the achievability of the

deadline D specified by the user. For a deadline to be achievable, it should be greater than the Minimum Execution Time of

the Workflow, 𝑀𝐸𝑇_𝑊 [39]. Therefore, the algorithm first evaluates 𝑀𝐸𝑇_𝑊 and compares it with the user specified dead-

line D. If D is greater than 𝑀𝐸𝑇_𝑊, the algorithm continues to find the appropriate schedule, otherwise the user is

prompted to revise the deadline D.

Once the achievability of the user specified deadline is ascertained, the algorithm progresses to identify the required sched-

ule by employing a pre-processing step and a monitor control loop. The pre-processing step is intended to reduce the

runtime overhead of the algorithm by bundling pipeline tasks into a single task. The monitor control loop maintains the

updated information of the running tasks and accordingly makes dynamic provisioning and scheduling decisions for the

waiting unscheduled tasks. The remainder of this section explains the proposed algorithm in detail.

4.2.1 Pre-processing

In order to reduce the runtime overhead of the algorithm, the workflow is pre-processed to combine pipeline tasks (figure

3) into a single task. This helps in saving the data transfer time involved in transferring data to the next stage of the pipeline

and also accelerates dynamic scheduling/provisioning plan generation. Figure 4 illustrates an example of pre-processing.

Tasks T1 and T2 are combined and treated as one task T1+T2. This allows T2 to be executed on the same site where T1 is

executed enabling T2 to use the temporary results stored locally. It helps in avoiding the data transfer time between T1 and

T2 if they would execute on different sites and also reduces the run time overhead of the monitor control loop. The pre-

processing steps are elaborated in the algorithm 2.

Algorithm 2. Pre-processing (W)

Input: DAG 𝑊(𝑇,𝐸) of a job consisting of n tasks.

1. Begin

2. 𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒 ← {𝑡𝑒𝑛𝑡𝑟𝑦}

Fig 3. Pipeline workflow Fig 4. Pre-processing

 Before After

Process

 Data

F1
T1+T2

F2

F2

T4 T3

T2

T1

T3 T4

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

3. While 𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒 is not empty

4. 𝑡𝑝 ← 𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒(𝑓𝑟𝑜𝑛𝑡)

5. 𝑆𝑐 ← {𝑡𝑐| tc is the child of 𝑡𝑝 }

6. If 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑆𝑐) = 1 and 𝑡𝑐 has only one parent 𝑡𝑝

7. Replace 𝑡𝑝 and 𝑡𝑐 with 𝑡𝑝+𝑐

8. Set 𝑡𝑝+𝑐 as the parent of 𝑡𝑐
′𝑠 children tasks

9. Update ET(𝑡𝑝+𝑐)

10. Add 𝑡𝑝+𝑐 to the 𝑓𝑟𝑜𝑛𝑡 of 𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒

11. Else

12. Add 𝑡𝑝′𝑠 children to the 𝑟𝑒𝑎𝑟 of 𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒

13. End if

14. End While

15. End

4.2.2 Monitor Control loop

After pre-processing, the proposed algorithm provisions the cheapest applicable resources required for executing the entry

tasks, sends them for execution to the execution manager and enters into a monitor control loop. Since the entry tasks are

the first tasks to be scheduled, the Expected Start Time (XST) of the entry tasks is set to the expected VM acquisition time.

Within each monitor control loop, the algorithm updates the Actual Start Time (AST) of the scheduled running tasks, iden-

tifies the tasks whose parent tasks have been scheduled and are running (to-be-scheduled tasks) and then makes appropriate

provisioning/scheduling decisions using the PlanandSchedule procedure. The monitor control loop continues until all work-

flow tasks are scheduled. At each stage, the cheapest applicable VM type for a task is determined by the CheapesttaskVMmap

procedure and if a new VM is required at time T, request for the VM is made at time T- expected VM acquisition time to ensure

that the VM is available when it is required. The entire process is described in algorithm 1.

Algorithm 1. Just-in-time Workflow Scheduling
Input:

 DAG 𝑊(𝑇,𝐸) of a job consisting on n tasks

 1 x m cost matrix C of the m VM types offered by the Cloud provider

 n x m ET matrix of execution time of tasks 𝑡𝑖 (𝑖 = 1 𝑡𝑜 𝑛) on each VM type 𝑉𝑀𝑣(𝑣 = 1 𝑡𝑜 𝑚)

 n x n TT matrix of transfer time between tasks

 User specified deadline D of the job

 VM acquisition time 𝑎𝑐𝑞𝑢𝑖𝑠𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦

 Lease Time interval interval

1. Begin

2. Compute 𝑀𝐸𝑇_𝑊 using equations 2, 3, 4 and 11

3. If D ≥ 𝑀𝐸𝑇_𝑊

4. Call Pre-processing(W)

5. Compute MET, LFT and XET matrices using equations 2, 8 and 10 respectively

6. {𝑡𝑒𝑛𝑡𝑟𝑦} ← Root nodes of the workflow graph W

7. For each 𝑡𝑒 ∈ {𝑡𝑒𝑛𝑡𝑟𝑦}

8. 𝑇𝑜_𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛 ← 𝐶ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑡𝑎𝑠𝑘𝑉𝑀𝑀𝑎𝑝 (𝑡𝑒)

9. Procure a VM instance 𝑣𝑒 of type To_Provision from the Cloud

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

10. Schedule 𝑡𝑒 on 𝑣𝑒 at 𝑋𝑆𝑇(𝑡𝑒)

11. Update 𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠

12. End for

13. While all tasks in T are not completed do

14. Send the scheduled tasks for execution to the execution manager

15. Update AST, XFT of scheduled tasks

16. 𝑡𝑜_𝑏𝑒_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ← {𝑡𝑖 ∈ 𝑇 | ∀𝑡𝑝 ∈ 𝑡𝑖
′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑡𝑝 is scheduled and running}

17. 𝑃𝑙𝑎𝑛𝑎𝑛𝑑𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 (𝑡𝑜_𝑏𝑒_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑)

18. End while

19. Else

20. Prompt user to specify a deadline above 𝑀𝐸𝑇_𝑊

21. End If

22. End

4.2.2.1 PlanandSchedule algorithm

The PlanandSchedule algorithm receives a set of tasks as input and schedules them on appropriate VM instances. The algo-

rithm, in coordination with the CheapesttaskVMmap, finds a minimum cost schedule in which least possible data transfer

time is involved. For this, it tries to schedule a task onto its last parent (parent with maximum Expected Finish Time (XFT))

site to avoid delays incurred due to data transfer time if it is scheduled onto a different site. The pseudo-code for

PlanandSchedule is given in algorithm 3.

For each task 𝑡𝑖 in the task_list, PlanandSchedule calls the CheapesttaskVMmap procedure (line 3) which returns the cheapest

applicable VM type 𝑣𝑚𝑚𝑎𝑝 on which 𝑡𝑖 can be scheduled. Since VMs are charged for entire time intervals even if they are

partially utilized, therefore in order to use VMs as densely as possible, the PlanandSchedule algorithm tries to find if 𝑡𝑖 can

be scheduled on an already leased VM before its Current Lease Interval (CLI) ends. For this, it first tries to find the set of

active VMs {𝑣𝑘 } of the same type as 𝑣𝑚𝑚𝑎𝑝 such that the following conditions are satisfied.

i. 𝑡𝑖 can be scheduled on 𝑣𝑘 , such that 𝑡𝑖 uses a portion of the remaining time of CLI (𝑣𝑘)

ii. Expected Finish Time of 𝑡𝑖 ≤ Latest Finish Time of 𝑡𝑖

iii. Assuming that 𝑡𝑖 is scheduled on 𝑣𝑘 , for no 𝑡𝑐 such that 𝑡𝑐 ∈ 𝑡𝑖
′𝑠 children, Expected Start Time of 𝑡𝑐 > Lastest Start

Time of 𝑡𝑐

If such a set of active VMs exist, the VM 𝑣𝑘 which has the least difference between its Expected Idle Start Time (XIST) and

the Expected Start Time (XST) of 𝑡𝑖 is selected from this set for scheduling 𝑡𝑖. 𝑋𝑆𝑇(𝑡𝑖) and 𝑉𝑚_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠 are updated ac-

cordingly (lines 4-8). Otherwise, PlanandSchedule, tries to find the set of active VMs{𝑣𝑗}, such that 𝑡𝑦𝑝𝑒(𝑣𝑗) ≥ 𝑣𝑚𝑚𝑎𝑝 and

the following conditions are met.

i. 𝑡𝑖 can be scheduled on 𝑣𝑗 such that 𝑡𝑖 can finish its execution within the remaining time of CLI (𝑣𝑗)

ii. Expected Finish Time of 𝑡𝑖 ≤ Latest Finish Time of 𝑡𝑖

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

iii. Assuming that 𝑡𝑖 is scheduled on 𝑣𝑗, for no 𝑡𝑐 such that 𝑡𝑐 ∈ 𝑡𝑖
′𝑠 children, Expected Start Time of 𝑡𝑐 > Latest Start Time

of 𝑡𝑐

If such a set of VMs exist, the VM 𝑣𝑗 which has the least difference between its Expected Idle Start Time (XIST) and the

Expected Start Time (XST) of 𝑡𝑖 is selected from this set for scheduling 𝑡𝑖. The 𝑋𝑆𝑇(𝑡𝑖) and 𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠 are updated ac-

cordingly (lines 10-14). If none of the active VMs can be utilized for scheduling 𝑡𝑖 , a new VM of type 𝑣𝑚𝑚𝑎𝑝 is procured

from the Cloud to schedule 𝑡𝑖 (16-18). After all the tasks in the task_list are scheduled, PlanandSchedule deprovisions the idle

VMs on which no task is scheduled and which have completed the transfer of all the required output files (line 22).

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑. 𝐏𝐥𝐚𝐧𝐚𝐧𝐝𝐬𝐜𝐡𝐞𝐝𝐮𝐥𝐞(𝐭𝐚𝐬𝐤_𝐥𝐢𝐬𝐭)

1. 𝐴𝑐𝑡𝑖𝑣𝑒_𝑉𝑀𝑠 ← List of active VMs in the VM pool

2. For each 𝑡𝑖 ∈ task_list do

3. 𝑣𝑚𝑚𝑎𝑝 ← 𝐶ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑡𝑎𝑠𝑘𝑉𝑀𝑀𝑎𝑝 (𝑡𝑖)

4. 𝐹𝑖𝑛𝑑 { 𝑣𝑘} ∈ 𝐴𝑐𝑡𝑖𝑣𝑒_𝑉𝑀𝑠 s.t. 𝑡𝑦𝑝𝑒(𝑣𝑘) = 𝑣𝑚𝑚𝑎𝑝 and 𝑋𝑆𝑇(𝑡𝑖) ≤ CLI (𝑣𝑘) end time and

 XFT (𝑡𝑖) ≤ 𝐿𝐹𝑇(𝑡𝑖) and for no child 𝑡𝑐 of 𝑡𝑖 𝑋𝑆𝑇(𝑡𝑐) > 𝐿𝑆𝑇(𝑡𝑐)

5. If {𝑣𝑘} exists

6. Find the VM 𝑣𝑘 , such that the difference between 𝑋𝐼𝑆𝑇(𝑣𝑘) and 𝑋𝑆𝑇 (𝑡𝑖) is

 minimum

7. Schedule 𝑡𝑖 𝑜𝑛 𝑣𝑘 and update 𝑋𝑆𝑇(𝑡𝑖)

8. Update 𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠

9. Else

10. Find { 𝑣𝑗} ∈ 𝐴𝑐𝑡𝑖𝑣𝑒_𝑉𝑀𝑠 s.t. 𝑡𝑦𝑝𝑒(𝑣𝑗) > 𝑣𝑚𝑚𝑎𝑝 and 𝑋𝐹𝑇(𝑡𝑖) ≤ CLI (𝑣𝑗) end time and

 XFT (𝑡𝑖) ≤ 𝐿𝐹𝑇(𝑡𝑖) and for no child 𝑡𝑐 of 𝑡𝑖 𝑋𝑆𝑇(𝑡𝑐) > 𝐿𝑆𝑇(𝑡𝑐)

11. If {𝑣𝑗} exists

12. Find the VM 𝑣𝑗 such that the difference between 𝑋𝐼𝑆𝑇(𝑣𝑗) and 𝑋𝑆𝑇 (𝑡𝑖) is

 minimum

13. Schedule 𝑡𝑖 𝑜𝑛 𝑣𝑗, update 𝑋𝑆𝑇(𝑡𝑖)

14. Update 𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠

15. Else

16. Procure a new 𝑉𝑀 𝑣 of type 𝑣𝑚𝑚𝑎𝑝 from the Cloud at (𝑋𝑆𝑇 (𝑡𝑖) − 𝑎𝑐𝑞𝑢𝑖𝑠𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦)

17. Schedule 𝑡𝑖 𝑜𝑛 𝑣 at 𝑋𝑆𝑇 (𝑡𝑖)

18. Update 𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠

19. End if

20. End if

21. End for

22. Deprovision the idle VMs

23. Return

4.2.2.2 CheapesttaskVMmap Algorithm

The CheapesttaskVMmap algorithm, receives a task 𝑡 as input and returns its cheapest applicable VM type 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝. It is

observed that though the cheapest VM type may be able to finish a task before its latest finish time, however it may not be

the best choice. This is because choosing the cheapest VM type for a task, without considering its effect on the children tasks,

may force the children tasks to execute on faster VMs thus increasing the total cost. Therefore, this work defines cheapest

applicable VM type for a task as the cheapest type single VM, which if used to schedule all the tasks of the critical path (longest

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

path) beginning at 𝑡, can finish the execution of the entire critical path before the deadline D. Also, as discussed, the objective

is to find a minimum cost schedule with least possible data transfer time. Therefore, assuming that the task 𝑡 cannot wait

for a VM to get idle (free) the algorithm first tries to identify if task 𝑡 can be scheduled on the same VM 𝑣𝑝 on which its last

parent (parent with the maximum Expected Finish Time) is scheduled. For this XST(𝑡), if 𝑡 is scheduled on 𝑣𝑝, is first evalu-

ated and compared with the XIST(𝑣𝑝). If XIST(𝑣𝑝) is less than XST(𝑡) (which means 𝑣𝑝 will be idle at the Expected Start Time

of 𝑡 and hence is available for scheduling 𝑡) and the critical path (longest path) starting at 𝑡, if scheduled on 𝑣𝑝, can finish its

execution before the deadline D, then the 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 is set to 𝑡𝑦𝑝𝑒(𝑣𝑝) and the XST(𝑡) is updated accordingly (lines 4-10).

The PlanandSchedule procedure then schedules 𝑡 on 𝑣𝑝. Otherwise, 𝑋𝑆𝑇(𝑡) is updated and the cheapest VM type 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝

for 𝑡 is identified using the following rules (lines 12-18).

i. Identify the set {𝑉𝑀𝑘} of VM types such that the critical path starting at 𝑡, if scheduled on a single VM of type 𝑉𝑀𝑘,

can finish its execution before the deadline D.

ii. From the set {𝑉𝑀𝑘} identify the VM type 𝑉𝑀𝑗 for which the total execution cost of this critical path is minimum.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟒. 𝐂𝐡𝐞𝐚𝐩𝐞𝐬𝐭𝐭𝐚𝐬𝐤𝐕𝐌𝐌𝐚𝐩 (𝐭)

1. Begin

2. 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 = 𝜙

3. If 𝑡 is not an entry task then

4. 𝑙𝑎𝑠𝑡𝑃𝑎𝑟𝑒𝑛𝑡 ← 𝑎𝑟𝑔 (max
𝑡𝑝∈𝑡′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

{𝑋𝐹𝑇(𝑡𝑝)})

5. 𝑣𝑝 ← 𝑉𝑀 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝐿𝑎𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡 𝑖𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔

6. 𝑡𝑒𝑚𝑝 ← max (𝑋𝐹𝑇(𝑙𝑎𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡), max
𝑡𝑝∈𝑡′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑡𝑝≠𝑙𝑎𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡

{𝑋𝐹𝑇(𝑡𝑝) + 𝑇𝑇(𝑡𝑝, 𝑡)}))

7. If ((𝑡𝑒𝑚𝑝 ≥ 𝑋𝐼𝑆𝑇(𝑣𝑝)) and (𝑡𝑒𝑚𝑝 + 𝑋𝐸𝑇(𝑡, 𝑡𝑦𝑝𝑒(𝑣𝑝))) ≤ 𝐷) then

8. 𝑋𝑆𝑇(𝑡) ← 𝑡𝑒𝑚𝑝

9. 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 ← 𝑡𝑦𝑝𝑒(𝑣𝑝)

10. Return 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝

11. Else

12. 𝑋𝑆𝑇(𝑡) ← max
𝑡𝑝∈𝑡′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

{𝑋𝐹𝑇(𝑡𝑝) + 𝑇𝑇(𝑡𝑝, 𝑡)}

13. End if

14. Else

15. 𝑋𝑆𝑇(𝑡) ← 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦

16. End if

17. Find {𝑉𝑀𝑘} ∈ VMset for which (𝑋𝑆𝑇(𝑡) + 𝑋𝐸𝑇(𝑡, 𝑉𝑀𝑘)) ≤ D

18. 𝑉𝑀𝑗 = 𝑎𝑟𝑔 (min
𝑉𝑀𝑘

 ⌈(𝑋𝐸𝑇(𝑡, 𝑉𝑀𝑘)/𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)⌉ × Cost (𝑉𝑀𝑘))

19. 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 ← 𝑉𝑀𝑗

20. Return 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝

4.3 An Illustrative Example

An example has been illustrated, in this section, for better understanding of the algorithm. The steps of the algorithm has

been traced on a sample workflow shown in figure 5(a). The workflow consists of nine tasks 𝑡1 to 𝑡9. The number on each

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

Fig 5. An example of Workflow Pre-processing

 𝑣𝑠 𝑣𝑚 𝑣𝑙 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

arc shows the estimated data transfer time between the corresponding tasks. Three types of VMs are assumed

{𝑉𝑀𝑠 ,𝑉𝑀𝑚, 𝑉𝑀𝑙} (s-small, m-medium, l-large), for the workflow tasks’ execution. Figure 6 depicts the corresponding execution

time and data transfer time matrix. The time interval of the minimum lease period is assumed to be 10 minutes and the

acquisition delay is assumed to be 1 minute. Also, the cost of each time interval is assumed to be $ 0.01 for small, $ 0.02 for

medium and $0.04 for large VM instance types. The user defined deadline is set to be 50 minutes. Although, the proposed

algorithm is capable of making appropriate provisioning/scheduling decisions in the event of performance variation, for

simplicity this example assumes that there is no performance variation and the Actual Start Time (AST) of all the tasks are

same as their Expected Start Time (XST) obtained during the schedule planning.

The algorithm begins by evaluating the Minimum Execution Time (MET), Earliest Start Time (EST) and Earliest Finish

Time (EFT) for each task of the workflow using equations 2, 3 and 4 respectively. The values of these parameters are shown

in table 2. It then compares the Minimum Execution Time of the Workflow, 𝑀𝐸𝑇_𝑊(max
𝑡𝑖∈𝑊

(𝐸𝐹𝑇(𝑡𝑖) = 49 minutes) with the

deadline D (50 minutes). Since 𝑀𝐸𝑇_𝑊 is greater than D, the deadline is achievable and the algorithm proceeds to identify

the required schedule.

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 =

𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6
𝑡7
𝑡8
𝑡9

[

4 2 1
6 4 2
16 9 6
12 7 4
11 8 5
7 3 2
18 12 8
13 9 5
15 12 9]

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑖𝑚𝑒 =

𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6
𝑡7
𝑡8
𝑡9

[

0 6 6 6 0 0 0 0 0
0 0 0 0 4 4 0 0 0
0 0 0 0 0 5 0 0 0
0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 8
0 0 0 0 0 0 0 0 0]

(a) (b)

Fig 6. (a) Execution time matrix on the available VMs and (b) Data transfer time matrix of the sample task graph

6

4

8

4

5 2

3

t2

6

6
t1 t6

t5

t8
t3

t9

4

t4 t7

4

4

4

5
2

4

6

3 6

t1 t6

t4+7

t3

t2 t5

t8+9

6

(a) Sample Workflow (b) After Pre-processing

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

 𝑡1 𝑡2 𝑡3 𝑡4+7 𝑡5 𝑡6 𝑡8+9

 𝑣𝑠 𝑣𝑚 𝑣𝑙

Table 2. The values of MET, LFT and XET for the workflow of figure 5(a)

Tasks t1 t2 t3 t4 t5 t6 t7 t8 t9

MET 1 2 6 4 5 2 8 5 9

EST 0 7 7 7 13 18 15 27 40
EFT 1 9 13 11 18 20 23 32 49

Step 1: Pre-processing the workflow using Algorithm 2: Algorithm 2 pre-processes the given workflow graph (figure 5(a)) by

combining the sequential tasks 𝑡4, 𝑡7 and 𝑡8 , 𝑡9 into a single task as 𝑡4+7 and 𝑡8+9 respectively. The workflow graph obtained

after pre-processing is shown in figure 5(b). The modified execution and data transfer matrix is shown in figure 7.

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 =

𝑡1
𝑡2
𝑡3

 𝑡4+7

𝑡5
𝑡6

𝑡8+9

[

4 2 1
6 4 2
16 9 6
30 19 12
11 8 5
7 3 2
28 21 14]

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑖𝑚𝑒 =

𝑡1
𝑡2
𝑡3

𝑡4+7

𝑡5
𝑡6

𝑡8+9

[

0 6 6 6 0 0 0
0 0 0 0 4 4 0
0 0 0 0 0 5 0
0 0 0 0 0 0 4
0 0 0 0 0 0 3
0 0 0 0 0 0 2
0 0 0 0 0 0 0]

(a) (b)

After pre-processing, the Just-in-time workflow scheduling algorithm (algorithm 1) computes Minimum Execution Time (MET),

Latest Finish Time (LFT) and Expected Execution Time (XET) for each task of the workflow using equations 2, 8 and 10

respectively. The values of these parameters are shown in table 3.

The algorithm then calls the procedure CheapesttaskVMmap to identify the most cost effective VM type to schedule the

entry task 𝑡1. CheapesttaskVMmap sets the XST (𝑡1) to 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦 and finds the cheapest applicable VM type for its

execution. Since out of the three VM types, XET (𝑡1, 𝑉𝑀𝑚) and XET (𝑡1, 𝑉𝑀𝑙) are less than the deadline D, the algorithm

compares the cost of executing the critical path starting at 𝑡1 on both these VM types and identifies 𝑉𝑀𝑚 as the cheapest

applicable VM for scheduling 𝑡1. It then procures a VM of type 𝑉𝑀𝑚 , schedules 𝑡1 on it and updates the VM pool status. The

algorithm enters the while loop at step 13 and executes the loop until all the tasks are scheduled. A trace of the algorithm is

given in table 4 which lists the values of different parameters during the planning and execution of the workflow tasks.

Table 3. Values of MET, LFT and XET for the workflow of figure 5(b)
Deadline D=50

Tasks t1 t2 t3 t4+7 t5 t6 t8+9

MET 1 2 6 12 5 2 14

𝐋𝐅𝐓 14 24 27 32 33 34 50

𝐗𝐄𝐓(𝑽𝒔) 62 45 51 58 39 35 28

𝐗𝐄𝐓 (𝑽𝒎) 42 33 33 40 29 24 21

𝐗𝐄𝐓 (𝑽𝒍) 27 21 22 26 19 16 14

Fig 7. (a) Modified execution matrix and (b) data transfer matrix of the workflow in fig. 5(b) after pre-processing

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

Table 4. Values of the parameters during the planning and execution of the workflow tasks of figure 5(b)

Entry Tasks

𝑡1

XST(𝑡1) = 1
To_Provi-

sion=𝑉𝑀𝑚

 VM Pool Status
VM id VM Type Start Time Expected

Idle start
time

End time

𝑣1 𝑉𝑀𝑚 0 3 -

Schedule
Task VM id XST XFT
𝑡1 𝑣1 1 3

Iteration 1

to_be_scheduled

𝑡2 𝑡3 𝑡4+7

XST(𝑡2) = 3
taskvmmap=𝑉𝑀𝑚

XST(𝑡3) = 9*
taskvmmap=𝑉𝑀𝑚

XST(𝑡4+7) = 9
taskvmmap=𝑉𝑀𝑚

 VM Pool Status
VM id VM Type Start Time Expected

Idle start
time

End time

𝑣1 𝑉𝑀𝑚 0 16 -

𝑣2 𝑉𝑀𝑚 (9-1)=8 28 -

Schedule

Task VM id XST XFT
𝑡2 𝑣1 3 7
𝑡3 𝑣1 7* 16

𝑡4+7 𝑣2 9 28
*While evaluating the most applicable VM type for task 𝑡3, CheapesttaskVMmap

procedure observes that 𝑡2 is already scheduled on 𝑡1 (the lastparent of 𝑡3) and

𝐸𝐼𝑆𝑇(𝑣1) = 7, which is greater than 𝑡𝑒𝑚𝑝 (= 3) and therefore it updates the

XST(𝑡3) to 9. The PlanandSchedule module however, while identifying the best pos-

sible plan, finds that 𝑡3 can be scheduled on 𝑣1 and subsequently updates the

XST(𝑡3) to 7.

Iteration 2

to_be_scheduled

𝑡5 𝑡6

XST(𝑡5) = 11
taskvmmap=𝑉𝑀𝑠

XST(𝑡6) = 16
taskvmmap=𝑉𝑀𝑚

VM Pool Status
VM id VM Type Start Time Expected

Idle start
time

End time

𝑣1 𝑉𝑀𝑚 0 19 -

𝑣2 𝑉𝑀𝑚 8 28 -

𝑣3 𝑉𝑀𝑠 (11-1)=10 22 -

Schedule
Task VM id XST XFT
𝑡5 𝑣3 11 22
𝑡6 𝑣1 16 19

Itera-

tion 3

to_be_scheduled
𝑡8+9

XST(𝑡8+9) = 28
taskvmmap=𝑉𝑀𝑚

VM Pool Status
VM id VM Type Start Time Expected

Idle start
time

End time

𝑣1 𝑉𝑀𝑚 0 19 21

𝑣2 𝑉𝑀𝑚 8 49 49

𝑣3 𝑉𝑀𝑠 10 22 25

Schedule
Task VM id XST XFT

𝑡8+9 𝑣2 28 49

Total Execution Time = 49 minutes
Total Cost = $ 0.18

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

5 PERFORMANCE EVALUATION

This section lists the experiments conducted to evaluate the performance of the proposed algorithm.

5.1 Experimental Workflows

The proposed algorithm was evaluated on the following four real application workflows used in diverse scientific domains.

a) Montage: Montage, is an astronomical application which is used to generate custom mosaics of the sky based on a set of

images. Most of its tasks are characterized as I/O intensive which do not require much processing capacity.

b) CyberShake: CyberShake is used in earthquake science to characterize earthquake hazards in a region by generating

synthetic seismograms. It may be classified as a data intensive workflow with large memory and CPU requirements.

c) LIGO: LIGO workflow is used in gravitational physics for detecting gravitational waves produced by various events in

the universe. This workflow is characterized as having CPU intensive tasks that consume large memory.

d) Epigenomics: Epigenomics workflow is used in bioinformatics to map the epigenetic state of human cells on genome-

wide scale. Most of the tasks in this workflow have high CPU and low I/O utilization.

A detailed description of these workflows is presented by Juve et.al [21]. Figure 8 shows the structure of small size workflows

for each of these applications. It can be seen that these workflows have different composition and structural properties

(pipeline, data aggregation, data distribution and data redistribution).

In order to facilitate evaluation of workflow algorithms and systems, Bharti et al. [22] developed a workflow generator

to create synthetic workflows of arbitrary size similar to the real world scientific workflows. The generated workflows are

represented in form of Directed Acyclic Graph in XML (DAX) format and are available in [33]. These DAX files contain

information such as list of tasks, dependencies between tasks, their computation time and size of the input/output files

generated by the tasks. In order to evaluate the proposed algorithm, experiments were conducted for each of the above

applications on three workflow sizes: small (approximately 30 tasks), medium (approximately 100 tasks) and large (approx-

imately 1000 tasks).

(a) Montage (b) CyberShake (c) LIGO (d) Epigenomics

Figure 8. Structure of the workflows used in the experiment [21]

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

5.2 Baseline Algorithms

Two recent contributions to the workflow scheduling problem in a Cloud environment proposed in [23] and [40] have

been used as the baseline algorithms. The IaaS Cloud Partial Critical Paths (IC-PCP) algorithm, proposed in [23], is one of

the most cited algorithms for the same problem addressed in this work; Schedule a workflow in an IaaS Cloud while mini-

mizing the execution cost and meeting the application’s deadline. On the other hand, authors in [40] proposed a robust and

fault-tolerant workflow scheduling algorithm that handles performance variations of Cloud resources and failures in the

environment. They proposed three multi-objective resource selection policies to schedule workflows in a Cloud environment

that minimizes the makespan and cost. Both these algorithms consider many characteristics typical of a Cloud environment.

For example, they account for the heterogeneous VM instance types which can be provisioned on demand and are charged

based on pay-as-you-go billing model. They also consider data transfer time in addition to the computation time of each

task. However, IC-PCP, does not account for the performance variation of VMs and the acquisition delay involved in provi-

sioning a VM which has been taken into consideration both in the proposed work and in [40].

The IC-PCP algorithm is based on workflow’s Partial Critical Paths (PCPs). It begins by identifying a critical path, asso-

ciated with each exit node of the workflow. The tasks on each critical path are scheduled on the cheapest available VM,

preferably to an already leased VM instance, which can meet the latest finish time requirements of all the tasks in the critical

path. If none of the already leased VM instances can meet the latest finish time constraints of the tasks, the cheapest instance

which can finish all the tasks in the critical path while meeting the latest finish time constraint is provisioned and the path

is assigned to it. This process is repeated until all the tasks of the workflow are scheduled. At the end, each task has a VM

assigned with the associated start and end time. Also, each leased VM has a start time determined by the start time of its

first scheduled task and an end time determined by the end time of its last scheduled task.

The robust scheduling algorithm proposed in [40] is also based on Partial Critical Paths (PCPs). In order to incorporate

performance variability of VMs, a certain amount of slack time defined by the robustness type is added to the PCP execution

time which dictates the amount of execution time fluctuations a PCP can tolerate. From the set of all possible VM types, a

feasible solution set FS for each PCP is created using the budget and time constraints. For each PCP and a given robustness

type, appropriate VM type is selected from the FS based on certain resource selection policies. Each of the policies have three

objectives; robustness, time and cost. The priorities among these objectives change for each of the policies: (a) Robustness-

Cost-Time (RCT) policy gives priority to robustness, followed by cost and time (b) Robustness-Time- Cost (RTC) gives pri-

ority to robustness, followed by time and cost and (c) Weighted policy allows users to define their own objective function

using the three parameters (robustness, time and cost) and assign weights to each of them. Each of these policies sorts the

feasible solution set based on the first parameter and the solutions with the same first parameter are sorted in the increasing

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

order of second parameter. Solutions with the same first and second parameters are sorted in increasing order of third

parameter. The best solution from this sorted list is picked and the corresponding VM type is mapped to the tasks of the

PCP. Further, for fault-tolerance, the authors employed checkpointing at regular intervals. When a task fails, the algorithm

resumes the task from the last checkpoint. The comparison of the proposed work with the robust scheduling algorithm is

done only for the parameters which caters for performance variation and the acquisition delays of VMs. Further, the RCT

and the RTC resource selection policies, in which the objective functions are specified distinctly, have been selected as the

baseline algorithms.

5.3 Experimental Setup

The Cloud service provider is assumed to provide five different types of VMs. The VM configurations and their pro-

cessing capacity are based on the performance analysis of EC2 Cloud offering [7] and are presented in table 5. An ECU is

the equivalent CPU power of 1.0-1.2 GHz Opteron or Xeon processor. VM pricing is based on the current pricing schemes

of Amazon EC2 [29]. The average bandwidth between VMs is set to 20 MBps, which is the approximate average bandwidth

offered in Amazon web services [25].

Table 5. Types of VMs used in the Experiments
VM Type ECUs(cores) Processing Capacity

(GFLOPS)
Cost per hour

($/h)

m1.small 1(1) 4.4 $.04
m1.large 4(2) 17.6 $.16

m1.xlarge 8(4) 35.2 $.32
c1.medium 5(2) 22.0 $.2

c1.xlarge 20(8) 88 $.8

Billing interval is set to 10 minutes. Processing time of workflow tasks on different VMs were estimated on the basis of

their processing capacity. Performance variation was modelled in accordance with the Schad et.al. [12]. Similar to [26], the

performance of each VM is reduced by at most 24% based on a normal distribution with mean 12% and standard deviation

of 10%. In addition, a data transfer time variation of 19% [12] is modelled, based on a normal distribution with mean 9.5 %

and a standard deviation of 5%. Boot time of a VM is set to 97 seconds based on the results obtained by Mao and Murphy

[43] for Amazon EC2 Cloud.

In order to evaluate the proposed algorithm, a deadline needs to be defined for each workflow. If the deadline is gener-

ously relaxed, there is enough slack time to accommodate for the VM acquisition delay and the performance variation.

Therefore, a comprehensive evaluation requires performance analysis on all possible deadlines: Strict, Moderate and relaxed.

To this end, the deadlines were set using the rule as specified in equation 13.

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝐷 = (1 + µ) × 𝑀𝐸𝑇_𝑊 (13)

Where, 𝑀𝐸𝑇_𝑊 is the minimum execution time of the workflow. µ is the deadline factor defined as follows.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

 𝐹𝑜𝑟 𝑆𝑡𝑟𝑖𝑐𝑡 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠: 0 ≤ µ < 1.5

 𝐹𝑜𝑟 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠: 1.5 ≤ µ < 3

 𝐹𝑜𝑟 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠: 3 ≤ µ < 4.5

For the experiments, the value of µ is varied with a step length of 0.4.

5.4 Results and Analysis

A comprehensive evaluation of the proposed algorithm and its comparison with the baseline algorithms was performed,

to identify its ability in meeting workflow deadline constraints at reduced costs. To this end, a Cloud environment with

performance variation and acquisition delays are simulated in accordance with the findings of Schad et.al [12] as discussed

in section 5.3 and experiments are conducted to analyse the algorithms in terms of meeting the deadlines, makespan and

the cost incurred in executing the experimental workflows. Each experiment is executed 10 times and the mean of the results

obtained for large workflows are reported.

5.4.1 Deadline Constraint Evaluation

To analyse the algorithms in terms of meeting the user defined deadlines, the percentage of deadlines met for each work-

flow with the different deadline factors are evaluated. The results are displayed in table 6.

Strict Deadlines: It can be observed from the results in table 6 that IC-PCP fails to meet all the strict deadlines for all the

experimental workflows. RCT displays a better performance with 52.5% hit rate for the LIGO workflow, 47.5% hit rate for

Montage workflow, 40% hit rate for CyberShake workflow and 37.5% hit rate for Epigenomics workflow. RTC exhibits much

better performance with 80% of the deadline constraints met for Montage workflow, followed by CyberShake, LIGO and

Epigenomics workflows with 77.5%, 77.5% and 72.5% hit rate respectively. The proposed JIT-C outperforms the other three

algorithms at strict deadlines with a hit rate of 88% for Montage workflow, 84% hit rate for CyberShake and LIGO workflows

and 80% hit rate for Epigenomics workflow.

Moderate deadlines: Results obtained for moderate deadlines (table 6) show that IC-PCP does not improve its performance

and fails to meet any of the moderate deadline constraints. RCT slightly improves its performance as compared to its per-

formance on strict deadlines with a hit rate of 55% for LIGO workflows, 52.5% for Montage & Epigenomics workflows, and

47.5% for CyberShake workflow. Both RTC and JIT-C are best performing algorithms at moderate deadlines with 100% hit

rate.

Relaxed Deadlines: As can be seen from the results in table 6, IC-PCP, fails to meet all the relaxed deadlines and registers a

0% hit rate. RCT registers a marginal improvement with 60% hit rate for Epigenomics workflow, 57.5% hit rate for LIGO,

55% hit rate for Montage, and 52.5% hit rate for CyberShake workflows. Both RTC and JIT-C algorithms again exhibit 100%

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

performance at relaxed deadlines.

It is observed, from the above, that IC-PCP performs poorly over all other three algorithms. This is because IC-PCP algo-

rithm fails to capture the performance unpredictability and startup delays of VMs in a Cloud environment. On the other

hand, as discussed in section 5.2, RCT and RTC policies are designed to bear a certain degree of uncertainty in VM perfor-

mance, which is denoted by its robustness type. RCT policy gives highest priority to robustness followed by cost and

makespan in order while RTC gives highest priority to robustness followed by makespan and cost in order. Evidently, RTC

exhibits a better performance in comparison to RCT in terms of meeting the deadline constraints. The inability of RCT to

improve its performance substantially with increase in deadline factors may be attributed to the following reasons. Given a

deadline, a robustness type and processing time matrix of the VMs, RCT schedules PCPs on cheapest possible VM services

such that the deadline constraints are met. Consequently, as deadline increases, RCT schedules PCPs on cheaper VMs which

in the event of performance variation, exceeds the execution time of the PCP beyond the fluctuation limits it can tolerate,

thus missing the deadlines.

Although, with moderate and relaxed deadlines, both RTC and JIT-C exhibit 100% hit rate however at strict deadline

factors the performance of JIT-C is better than RTC. It may be noted that since RTC schedules the entire PCPs on VMs,

therefore, at strict deadlines, performance variation of a VM not only adversely effects the execution time of all the tasks of

the PCP running on it but also the execution start time of tasks of other PCPs. This cascading effect, at times, results in

missing the strict deadlines. On the other hand, JIT-C algorithm schedules individual tasks just before they are ready for

execution taking into account the performance variation of the predecessor tasks and hence is able to exhibit a better hit rate.

Table 6. Percentage of deadline met for each workflow and deadline factor
Deadline
Factor

 MONTAGE CYBERSHAKE EPIGENOMICS LIGO

STRICT

PCP 0 0 0 0

RCT 47.5 40 37.5 52.5

RTC 80 77.5 72.5 77.5

JIT 88 84 80 84

MODERATE

PCP 0 0 0 0

RCT 52.5 47.5 52.5 55

RTC 100 100 100 100

JIT 100 100 100 100

RELAXED

PCP 0 0 0 0

RCT 55 52.5 60 57.5

RTC 100 100 100 100

JIT 100 100 100 100

5.4.2 Makespan and Cost Evaluation

Since, it is intended that the algorithms should generate a cost effective schedule but not at the expense of a longer exe-

cution time, therefore for a holistic comparison, the average makespan and cost needs to be observed simultaneously. Figure

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

10 shows the average execution costs (in $) and the average makespan (in seconds) for each workflow. The reference line

above each deadline factor corresponds to its associated deadline value.

It can be seen that for all the workflows and all the deadline factors, IC-PCP generates cheapest schedules but it takes a

longer execution time than the workflow’s deadline and hence fails to meet any of the deadline constraints. Since the objec-

tive is to generate cheaper schedule while meeting the deadlines, therefore a cheaper schedule obtained at the cost of dead-

line constraint violation is not of any use. The comparison is therefore made among the other three algorithms that manage

to meet the deadlines.

As may be seen in figure 10, among RCT, RTC and JIT-C algorithms, RCT generates the cheapest schedules with maximum

makespan at all the deadline factors, however, it is able to register an average hit rate of only 50%. At strict deadline factors

of 0 and 0.4, JIT-C generates the most expensive schedules with minimum makespan and registers a better hit rate in com-

parison to the other algorithms. This is because JIT-C takes appropriate scheduling decisions to adapt to the VM performance

variation in order to limit deadline violations albeit at higher costs. It can be seen that for all the deadline factors other than

0 and 0.4, RTC generates the most expensive schedules with minimum makespan. On the contrary, as deadline factor in-

creases, JIT-C takes advantage of the increased slack time and generates cheaper schedules which are able to meet the dead-

line constraints. Further, it is observed that on an average for all deadline factors, JIT-C algorithm has 34% lower cost than

RTC and 28% higher cost than RCT. JIT-C, generates 46% higher makespan than RTC and 16% lower makespan than RCT.

It may therefore be concluded from the experimental results that JIT-C delivers better performance in terms of meeting the

deadlines at reduced costs in comparison to the baseline algorithms. At strict deadlines, it is able to deliver highest hit rates

for all the workflows, though at higher costs. However, as deadlines get relaxed, it is able to capitalize the increased slack

time available so as to reduce the cost.

Montage Workflow

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

CyberShake Workflow

Epigenomics Workflow

LIGO Workflow

Figure 10. Makespan and Cost of each Workflow for a given deadline factor

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

5.4.3 Computational Complexity

To compute the time complexity, suppose the workflow W (T, E) to be scheduled consists of n tasks and e edges. Also, let

the maximum number of VM types offered by the Cloud provider be m. Since W is a DAG, the maximum number of edges

in W is
(𝑛−1)(𝑛−2)

2
 ≅ 𝑂(𝑛2). First, we compute the time complexity for the overall actions of the different modules used in the

algorithm (Preprocessing, PlanandSchedule and CheapesttaskVMmap) instead of entering into details. The algorithm JIT-C first

establishes the achievability of the user defined deadline by evaluating the values of MET, EST, EFT and MET_W (lines 2-3)

which involves the time complexities of 𝑂(𝑛.𝑚), 𝑂(𝑛 + 𝑒), 𝑂(𝑛) and 𝑂(𝑛) respectively. Once it is established that the user

defined deadline D is achievable, the Preprocessing module (line 4) is called to combine pipeline tasks into a single task, which

involves a time complexity of 𝑂(𝑛). Next, MET, LFT and XET are evaluated for the preprocessed workflow (line 5) with time

complexities 𝑂(𝑛.𝑚), 𝑂(𝑛 + 𝑒) and 𝑂(𝑛2.𝑚) respectively. The algorithm then schedules the entry tasks and enters into a

monitor control loop, in which, it iteratively schedules the to_be_scheduled tasks of the workflow (lines 6-18). For each

to_be_scheduled task, the algorithm first identifies its cheapest applicable VM type, taskvmmap, with the CheapestVMmap mod-

ule which implies a time complexity of 𝑂(𝑛 + 𝑚). Next, the Planandchedule module evaluates the applicability of the available

Active_VMs to schedule the to_be_scheduled task in 𝑂(𝑛) time (since the number of active VMs is bounded by the number of

tasks (n), which represents the case when each task is scheduled on a separate VM). If an appropriate Active_VM does not

exist, a new VM of type taskvmmap (vmmap) is initiated to schedule the task. Subsequently, the AST and XFT of the scheduled

task is updated in a constant time. Further, since each task may have atmost (𝑛 − 1) sucessors, the list of to_be_scheduled tasks

is updated with time complexity 𝑂(𝑛). The above process is repeated once for each task of the workflow until all the tasks

are scheduled. Accordingly, the complexity of the scheduling steps (6-18) of the JIT-C algorithm is 𝑂((𝑛 + 𝑚)𝑛). Thus, the

overall time complexity of the proposed algorithm is 𝑂(𝑛2.𝑚 + ((𝑛 + 𝑚)𝑛)) = 𝑂(𝑛2.𝑚). Since the number of VM types,

offered by a Cloud provider, is constant and small enough to be ignored the overall time complexity of the proposed algo-

rithm is 𝑂(𝑛2). Further deliberating on the internal steps and dependencies involved in the VM assignment procedure for a

task 𝑡, it may be observed that for each of the Active_VMs, the Planandschedule module verifies that selecting a VM for sched-

uling 𝑡 does not lead to violation of the LSTs of any of its children tasks. Since a task may have a maximum of (n-1) children

tasks, therefore, the complexity obtained while considering all the dependencies is 𝑂(𝑛3).

It may be noted that the computational complexity of the baseline algorithms, computed to be equal to 𝑂(𝑛2) in [23] and

[40], does not include the time complexity involved in identifying the partial critical paths. Thus, if the complexity of iden-

tifying the partial critical paths is taken into account, the time complexity of these algorithms adds up to 𝑂(𝑛3), as has been

computed in a previous work by Abrishami et al [17]. Thus, the proposed model incurs same computational complexity as

the baseline algorithms while producing much better results.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

6 RELATED WORK

As deliberated in [28], workflow scheduling on distributed resources is an NP-hard problem. Therefore, it warrants to

apply heuristics/meta-heuristics based techniques for near-optimal or approximate solutions. Most of the existing work on

workflow scheduling focusses on distributed environments such as Grids and Clusters [15], [34], [35], [36], [37], [38] and

very few models are proposed for Cloud based environments. This section surveys some relevant contributions to the field.

Malawski et.al. proposed various dynamic and static algorithms for resource provisioning and scheduling workflow

ensembles in Cloud [30]. These algorithms aim to maximize the number of executed workflows while meeting the QoS

constraints of deadline and budget. The proposed solutions acknowledge different delays involved in leasing VM resources

from the IaaS Cloud, such as VM acquisition and termination delays. Also, the issue of performance variation of VMs is

addressed by assuming that a task’s execution time may vary based on a uniform distribution. They, however, consider only

a single VM type ignoring the heterogeneous nature of IaaS Clouds.

Mao and Humphrey proposed a dynamic approach for scheduling workflow ensembles on Clouds such that all work-

flows are finished within their deadlines at minimum cost [27]. They acknowledge different types of VMs, available at dif-

ferent prices, which can be leased dynamically in accordance with the needs. They proposed a set of heuristics such as task

bundling and instance consolidation aimed at minimizing the execution cost of the workflow ensemble. The issues of acqui-

sition delays and performance variation of VM instances were addressed by making dynamic scheduling decisions. Their

approach however does not consider data transfer time between tasks which is of significant importance and affects both

performance and the cost in scientific workflows especially for data intensive applications.

The algorithms presented by Mao and Humphrey [27] and Malawski [30] were designed for workflow ensembles and

not for single workflow instances. More in line, with this work, are the algorithms proposed by Abrishami et al. [23] and

Poola et al. [40] for scheduling a single workflow instance on an IaaS Cloud. Both of these works are based on workflow’s

Partial Critical Paths (PCPs). The algorithm proposed in [23] calculates the latest finish time for each task, based on its esti-

mated minimum execution time and the workflow’s deadline. It then schedules all the tasks of a PCP onto a single VM

instance which can finish all its tasks before their latest finish time. [23] also considers the characteristic features of Cloud

such as VM heterogeneity, elastic provisioning and interval based pay-as-you-go billing model. However, it does not con-

sider the performance variation and instance acquisition delays which may be encountered in a Cloud environment. The

authors in [40] proposed robust scheduling algorithm that handles performance variation and failures in a Cloud environ-

ment. They also proposed resource allocation policies that schedules PCPs of a workflow on heterogeneous Cloud resources

while minimizing the makespan and the cost. The algorithm presented in [40] though considers all the characteristic features

of Cloud, however it caters only for a certain degree of performance variability.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

Byun et al. [20] proposed the Partitioned Balanced Time Scheduling (PBTS) algorithm to estimate the minimum number

of computing resources required at each time interval such that a workflow finishes its execution within the user specified

finish time. Their algorithm also generates a task to resource mapping and is designed to run online. However, they do not

consider the heterogeneous nature of computing resources and assumes only one VM type.

Some authors have used meta-heuristic techniques for scheduling workflows. Pandey et al. [42] proposed a Particle

Swarm Optimization (PSO) based heuristic to minimize the total cost of execution of a single workflow on a Cloud while

balancing the load on the available resources. Rodriguez and Buyya [26] developed a Particle Swarm Optimization based

algorithm to minimize the execution cost of a workflow while meeting the user defined deadline constraints. Yu et al. [31]

used Genetic Algorithm for cost optimization under deadline constraint and execution time optimization under budget

constraint. Chen and Zhang [32] proposed an Ant Colony Optimization algorithm with three QoS parameters: time, cost

and reliability. Szabo at al. [41] proposed a multi-objective algorithm based on evolutionary approach, for execution of data-

intensive scientific applications in a Cloud environment such that the data transferred between tasks and the workflow

execution time are minimized. Though, these methods exhibit good performance they usually are more time consuming

than other heuristic based approaches.

Other existing heuristic based algorithms for scheduling deadline constrained workflows in a Cloud at reduced costs

[20], [23], [30] [40] either fail to completely incorporate the basic characteristics of Cloud Computing (e.g. heterogeneous

computing resources, VM performance variation and acquisition delays) or fail to incorporate the characteristics of scientific

workflows (e.g. data transfer time between tasks) [27]. As a result, these solutions are either unable to meet the user defined

deadline or generate costly schedules. The proposed work incorporates all the essential characteristic features of Cloud and

Scientific workflows, and presents a just-in-time resource provisioning and scheduling algorithm for executing scientific

workflows in a Cloud environment that meets the user specified deadline with reduced cost.

7 CONCLUSION

Cloud computing environment offers tremendous opportunities and alternatives to execute large scale scientific workflows.

Executing scientific applications in Cloud involves making appropriate provisioning and scheduling decisions such that the

overall execution cost is minimized while meeting a user defined deadline. Towards this, a dynamic cost-minimization and

deadline constrained heuristic, JIT-C, for scheduling scientific applications in a Cloud environment has been proposed in

this work. In order to maintain low execution cost, resources are provisioned just before they are needed. The objective of

meeting the deadline is achieved through continuous monitoring of the running tasks and dynamically making cost effective

scheduling decisions for subsequent tasks such that the deadline constraint is not violated. The simulation experiments

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

conducted on four well known workflows show that in comparison to the other state of the art heuristics, IC-PCP, RCT and

RTC, the proposed algorithm displays the highest hit rate in meeting the deadline. Further, it exploits the slack time available

with relaxed deadlines to produce cheaper schedules with lower execution costs. In comparison to the best performing

baseline algorithm RTC for the similar purpose, the proposed algorithm JIT-C generate schedules with an average of 34%

lower costs.

The proposed scheduling algorithm addresses three major issues of Cloud platforms: VM performance variation, resource

acquisition delays and heterogeneous nature of Cloud resources. It has the potential to act as a good candidate for its incor-

poration in Cloud resource management. It is proposed that in future, this work has the potential to include robustness

against the task and the VM failures which may adversely affect the overall workflow execution time. Another future work

may include the querying ability such as the effect on the cost by changing the deadline and revising it accordingly.

REFERENCES

[1] Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2009). Workflows and e-Science: An overview of workflow system features and capabilities. Fu-

ture Generation Computer Systems, 25(5), 528-540.
[2] Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y., Kesselman, C., & Katz, D. S. (2005). Pegasus: A framework for mapping complex scientific

workflows onto distributed systems. Scientific Programming, 13(3), 219-237.
[3] Wieczorek, M., Prodan, R., & Fahringer, T. (2005). Scheduling of scientific workflows in the ASKALON grid environment. ACM SIGMOD Rec-

ord, 34(3), 56-62.
[4] Berman, F., Casanova, H., Chien, A., Cooper, K., Dail, H., Dasgupta, A., & YarKhan, A. (2005). New grid scheduling and rescheduling methods in

the GrADS project. International Journal of Parallel Programming, 33(2-3), 209-229.
[5] Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., & Good, J. (2008, December). On the use of cloud computing for scientific

workflows. In eScience, 2008. eScience'08. IEEE Fourth International Conference on (pp. 640-645). IEEE.
[6] Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B. P., & Maechling, P. (2009, December). Scienti fic workflow applications on

Amazon EC2. In E-Science Workshops, 2009 5th IEEE International Conference on (pp. 59-66). IEEE.
[7] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D. (2010). A performance analysis of EC2 cloud computing services for

scientific computing. In Cloud Computing (pp. 115-131). Springer Berlin Heidelberg.
[8] Deelman, E., Singh, G., Livny, M., Berriman, B., & Good, J. (2008, November). The cost of doing science on the cloud: the montage example.

In Proceedings of the 2008 ACM/IEEE conference on Supercomputing (p. 50). IEEE Press.
[9] Juve, G., Deelman, E., Berriman, G. B., Berman, B. P., & Maechling, P. (2012). An evaluation of the cost and performance of scientific workflows on

amazon ec2. Journal of Grid Computing, 10(1), 5-21.
[10] Juve, G., & Deelman, E. (2011). Scientific workflows in the cloud. In Grids, Clouds and Virtualization (pp. 71-91). Springer London.
[11] Mell, P., & Grance, T. (2011). The NIST definition of cloud computing
[12] Schad, J., Dittrich, J., & Quiané-Ruiz, J. A. (2010). Runtime measurements in the cloud: observing, analyzing, and reducing variance. Proceedings of

the VLDB Endowment, 3(1-2), 460-471.
[13] Amazon elastic compute cloud (Amazon EC2). [Online] Available: http://aws.amazon.com/ec2/
[14] Amazon elastic block store (Amazon EBS). [Online] Available: http://aws.amazon.com/ebs/
[15] Yu, J., Buyya, R., & Tham, C. K. (2005, July). Cost-based scheduling of scientific workflow applications on utility grids. In e-Science and Grid

Computing, 2005. First International Conference on (pp. 8-pp). IEEE.
[16] Nudd, G. R., Kerbyson, D. J., Papaefstathiou, E., Perry, S. C., Harper, J. S., & Wilcox, D. V. (2000). PACE—A toolset for the performance prediction

of parallel and distributed systems. International Journal of High Performance Computing Applications, 14(3), 228-251.
[17] Abrishami, S., Naghibzadeh, M., & Epema, D. H. (2012). Cost-driven scheduling of grid workflows using partial critical paths. Parallel and Distrib-

uted Systems, IEEE Transactions on, 23(8), 1400-1414.
[18] Jang, S., Wu, X., Taylor, V., Mehta, G., Vahi, K., & Deelman, E. (2004). Using performance prediction to allocate grid resources. Texas A&M Uni-

versity, College Station, TX, GriPhyN Technical Report, 25.
[19] Smith, W., Foster, I., & Taylor, V. (1998, January). Predicting application run times using historical information. In Job Scheduling Strategies for

Parallel Processing (pp. 122-142). Springer Berlin Heidelberg
[20] Byun, E. K., Kee, Y. S., Kim, J. S., & Maeng, S. (2011). Cost optimized provisioning of elastic resources for application workflows. Future Generation

Computer Systems, 27(8), 1011-1026
[21] Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., & Vahi, K. (2013). Characterizing and profiling scientific workflows. Future Generation

Computer Systems, 29(3), 682-692.
[22] Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M. H., & Vahi, K. (2008, November). Characterization of scientific workflows. In Workflows

in Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop on (pp. 1-10). IEEE.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/TCC.2015.2451649, IEEE Transactions on Cloud Computing

[23] Abrishami, S., Naghibzadeh, M., & Epema, D. H. (2013). Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service
Clouds. Future Generation Computer Systems, 29(1), 158-169.

[24] Google Cloud Platform. [Online] Available: https://cloud.google.com/compute/
[25] Palankar, M. R., Iamnitchi, A., Ripeanu, M., & Garfinkel, S. (2008, June). Amazon S3 for science grids: a viable solution?. In Proceedings of the 2008

international workshop on Data-aware distributed computing (pp. 55-64). ACM
[26] Rodriguez M. A. & Buyya R, (2014). Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds. IEEE Trans-

actions on Cloud Computing, 2(2), 222-235
[27] Mao, M., & Humphrey, M. (2011, November). Auto-scaling to minimize cost and meet application deadlines in cloud workflows. In Proceedings of

2011 International Conference for High Performance Computing, Networking, Storage and Analysis (p. 49). ACM
[28] Johnson, D. S., & Garey, M. (1979). Computers and Intractability: A guide to the theory of NP-completeness. Freeman&Co, San Francisco.
[29] Amazon EC2 Pricing [Online] Available: https://aws.amazon.com/ec2/pricing/
[30] Malawski, M., Juve, G., Deelman, E., & Nabrzyski, J. (2012, November). Cost-and deadline-constrained provisioning for scientific workflow ensem-

bles in iaas clouds. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (p. 22). IEEE
Computer Society Press.

[31] Yu, J., & Buyya, R. (2006). Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms. Scientific

Programming, 14(3), 217-230.
[32] Chen, W. N., & Zhang, J. (2009). An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements. Systems,

Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,39(1), 29-43.
[33] Workflow Generator [Online] Avaliable: https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
[34] Yuan, Y., Li, X., Wang, Q., & Zhu, X. (2009). Deadline division-based heuristic for cost optimization in workflow scheduling. Information Sci-

ences, 179(15), 2562-2575.
[35] Sakellariou, R., Zhao, H., Tsiakkouri, E., & Dikaiakos, M. D. (2007). Scheduling workflows with budget constraints. In Integrated Research in GRID

Computing (pp. 189-202). Springer US.
[36] Prodan, R., & Wieczorek, M. (2010). Bi-criteria scheduling of scientific grid workflows. Automation Science and Engineering, IEEE Transactions

on, 7(2), 364-376.
[37] Duan, R., Prodan, R., & Fahringer, T. (2007, November). Performance and cost optimization for multiple large-scale grid workflow applications. In

Supercomputing, 2007. SC'07. Proceedings of the 2007 ACM/IEEE Conference on (pp. 1-12). IEEE.
[38] Afzal, A., Darlington, J., & McGough, A. (2006, September). Qos-constrained stochastic workflow scheduling in enterprise and scientific grids. In Pro-

ceedings of the 7th IEEE/ACM International Conference on Grid Computing (pp. 1-8). IEEE Computer Society.
[39] Saifullah, A., Ferry, D., Lu, C., & Gill, C. (2012). Real-time scheduling of parallel tasks under a general dag model.
[40] Poola, D., Garg, S. K., Buyya, R., Yang, Y., & Ramamohanarao, K. (2014, May). Robust scheduling of scientific workflows with deadline and

budget constraints in clouds. In Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on (pp. 858-
865). IEEE.

[41] Szabo, C., Sheng, Q. Z., Kroeger, T., Zhang, Y., & Yu, J. (2014). Science in the cloud: allocation and execution of data -intensive scientific work-
flows. Journal of Grid Computing, 12(2), 245-264.

[42] Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010, April). A particle swarm optimization-based heuristic for scheduling workflow applications in
cloud computing environments. In Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on (pp.
400-407). IEEE.

[43] Mao, M., & Humphrey, M. (2012, June). A performance study on the vm startup time in the cloud. In Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on (pp. 423-430). IEEE.

Jyoti Sahni received MTech degree in Computer Science from Jawaharlal Nehru University, New Delhi, India in 2013. She
is currently pursuing her Ph.D. in the School of Computer and System Sciences, Jawaharlal Nehru University, New Delhi,
India. Her research interests include resource management in distributed systems and scientific computing.

Deo Prakash Vidyarthi is Professor in the School of Computer & Systems Sciences, Jawaharlal Nehru University, New
Delhi. He was with the Department of Computer Science of Banaras Hindu University, Varanasi for more than 12 years and
joined JNU in the year 2004 as Associate Professor. Dr. Vidyarthi has published around 60 research papers in various peer
reviewed International Journals and Transactions (including IEEE, Elsevier, Springer, Wiley, World Scientific etc.) and
around 35 research papers in proceedings of various peer-reviewed conferences in India and abroad. Dr. Vidyarthi has two
books (research monograph) to his credit. One entitled “Technologies and Protocols for the Future Internet Design: Rein-
venting the Web” published by IGI-Global (USA) released in Feb. 2012, and another entitled “Scheduling in Distributed
Computing Systems: Design, Analysis and Models” published by Springer, USA released in 2009. He also has contributed

chapters in many edited books. He is in the editorial board and in the reviewer’s panel of many International Journals. Dr. Vidyarthi is the member
of the IEEE, Senior member of the International Association of Computer Science and Information Technology (IACSIT), Singapore, International
Society of Research in Science and Technology (ISRST), USA and International Association of Engineers. Research interest includes Parallel
and Distributed System, Grid and Cloud Computing, Mobile Computing and Evolutionary Computing.

https://cloud.google.com/compute/

