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Abstract— Cloud Computing, a distributed computing paradigm, enables delivery of IT resources over the Internet and follows the 
pay-as-you-go billing model. Workflow scheduling is one of the most challenging problems in Cloud computing. Although, workflow 
scheduling on distributed systems like Grids and Clusters have been extensively studied, however, these solutions are not viable for 
a Cloud environment. It is because, a Cloud environment differs from other distributed environment in two major ways: on-demand 
resource provisioning and pay-as-you-go pricing model. Thus, to achieve the true benefits of workflow orchestration onto Cloud 
resources novel approaches that can capitalize the advantages and address the challenges specific to a Cloud environment needs to 
be developed. This work proposes a dynamic cost-effective deadline-constrained heuristic algorithm for scheduling a scientific 
workflow in a public Cloud. The proposed technique aims to exploit the advantages offered by Cloud computing while taking into 
account the virtual machine performance variability and instance acquisition delay to identify a just-in-time schedule of a deadline 
constrained scientific workflow at lesser costs. Performance evaluation on some well-known scientific workflows exhibit that the 
proposed algorithm delivers better performance in comparison to the current state-of-the-art heuristics. 

Index Terms— Cloud Computing, Quality of Service (QoS), Resource provisioning, Scheduling, Scientific workflows. 

——————————      —————————— 

1 INTRODUCTION 

Scientists in different research domains such as physics, bio-informatics, earth science and astronomy run increas-

ingly complex large scale scientific applications for simulation and analysis of the real-world activities. Many of such large 

scale applications are usually constructed as workflows [1]. A workflow is a loosely coupled coarse-grained parallel appli-

cation that consists of a set of computational tasks linked through control and data dependencies. Scientific workflows may 

vary in size from a few tasks with limited resource needs to millions of tasks requiring tens of thousands of processing hours, 

terabytes of storage and high bandwidth network resources. Such complex workflows demand a high-performance compu-

ting environment and often it is desirable to distribute its tasks amongst multiple computing nodes in order to complete the 

work in a reasonable time. Traditionally, developers of scientific applications have used local workstations, supercomputers, 

clusters and grids platforms for running such workflows. Each of these platforms offer various trade-offs in terms of usabil-

ity, performance and cost. Many Grid projects such as Pegasus [2], ASKALON [3] and GrADS [4] have designed workflow 

management systems to define, manage and execute workflows on the Grid. Cloud computing, has recently emerged as a 

promising execution platform for huge and complex scientific applications. Many studies [5], [6], [7], [8], [9], [10] have in-

vestigated the use of Cloud for scientific applications and have concluded that it offers reasonably good solutions in terms 
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of performance and cost.  However, with the emergence of this new computing paradigm, novel scheduling approaches that 

are able to capitalize the advantages while addressing the challenges specific to a Cloud environment needs to be developed. 

Cloud provides a utility-oriented computing model that enables delivery of IT resources over the Internet and fol-

lows the pay-as-you-go billing model where users are charged based on their resource consumption [11]. Cloud ser-

vices are majorly categorized as: Infrastructure as a service (IaaS), which includes raw infrastructure and associated 

middleware; Platform as a service (PaaS), which includes APIs for developing applications on an abstract platform 

and Software as a service (SaaS) that provides support for remote software services. PaaS and SaaS based solutions are 

presently not considered as feasible alternatives for executing scientific workflows. This is because PaaS based solu-

tions involve the overhead of porting legacy applications to new platforms whereas scientific computing SaaS services 

are currently rarely available for usage [7]. IaaS Cloud on the other hand, offers several cost and performance related 

benefits for executing scientific applications as compared to traditional distributed execution environments like grids 

and clusters [6], [10]. Some of these benefits are as follows. 

a) Infinite economical resources:  Clouds give an illusion of unlimited computing resources, with the help of virtual-

ization concept, which may be provisioned on demand in a reasonable time frame and charged on a pay-per-use basis. 

Cloud platforms, thus, offers an alternative for executing scientific applications in which resources are no longer hosted 

by the research institutions but leased from big data centres as and when required. Outsourcing of scientific computa-

tion to Cloud platforms may not only help in potentially lowering the financial burden of resource over-provisioning, 

but also in reducing the effort and cost of operating, maintaining and periodically upgrading local computing infra-

structures. 

b) Direct on-demand provisioning: In grids and clusters, user specifies the amount of time and the resources required 

for a computation and the responsibility of resource allocation is delegated to a batch scheduler. Thus, requests for 

resources are queued and served in accordance with the scheduling policies. The allocation of resources and binding 

of jobs to these resources is tied together and is out of user's control. In Cloud, on the other hand, user directly provi-

sions required resources to schedule their computations using a user-controlled scheduler. This helps in decreasing 

scheduling overheads and hence significantly improves the performance. 

c) Elasticity: Cloud allows users to acquire and release the resources on demand. This allows the applications to 

easily grow or shrink its resource pool in accordance with the resource needs. Workflows usually have multiple stages, 

where the number of resources required for each stages may vary. Cloud-based workflow applications, may thus be 

allocated the exact amount of resources as and when required instead of reserving a fixed number of resources in 
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advance. This not only ensures efficient resource utilization but also results in a good cost savings for the user. 

Although, Cloud has many advantages there still remains certain specific issues which needs to be addressed by the 

prospective scheduling policies. Some of these issues are discussed below. 

a) Performance variation in Cloud: Virtualization of resources, shared nature of infrastructure and the heterogeneity 

of the physical resources in Cloud results in performance variability. Schad et al. [12] identified an overall CPU per-

formance variability of 24% on Amazon’s EC2 Cloud. Performance variability may have an adverse effect when dead-

line constrained workflows are scheduled on Clouds. Scheduling policies generally rely on the estimation of task 

runtimes on different VMs. This estimation is done based on the VMs computing capacity. If this capacity is always 

assumed to be optimal and the actual task execution takes longer time, the task will be delayed. This delay may then 

have a cascading effect on the child tasks causing the application to miss its deadline. 

b) Instance acquisition and termination delay: When a VM is leased, it requires an initial boot time for proper initiali-

zation before it is made available to the user. Similarly, when a VM is released it needs some time to shut down. Long 

start-up time may result in delays leading to missing of deadlines and therefore needs to be accounted for in the 

schedule generation. On the other hand, VM termination delays do not adversely affect the application deadlines 

though may incur little extra cost on the user.  

 c) Heterogeneous IaaS resources: When leasing a VM from an IaaS provider, the user has the facility to choose different 

machines with varying configurations and prices. Any scheduling solution needs to make appropriate provisioning 

decisions considering the performance and cost trade-off. 

The above discussed advantages and issues, dictate the development of innovative resource scheduling algorithms 

tailored for a Cloud environment which may generate cost and performance effective solutions for scientific workflow 

execution. Workflow execution in a Cloud environment involves two main stages. The first stage is the resource pro-

visioning phase which identifies and provisions the computing resources required to run the tasks. In the second stage, 

a schedule is generated and each task is mapped onto the appropriate computing resources. The decisions taken at 

each of these stages are guided by the task’s precedence constraints and performance requirements as specified by the 

user. Most of the previous works have focussed on planning workflows on distributed systems e.g. grids and clusters, 

confining only on the scheduling phase. This is because, grid and cluster environments provide a static pool of re-

sources readily available to execute the tasks and whose configuration is known in advance. Cloud environment, how-

ever, requires that both the above-mentioned stages are addressed and combined in order to produce efficient execu-

tion plans. Another important characteristic of previous works developed for grids and clusters is that mostly they 
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focus on minimizing the makespan (execution time) of the workflows. Though this is well suited for such environ-

ments, however, in Cloud an important parameter besides execution time is the economic cost. Faster resources are 

usually costlier and therefore there is a time-cost trade-off in selecting appropriate services. Hence, scheduling policies 

developed for Clouds should assess the various time/cost alternatives so as to deliver time effective solutions while 

avoiding unnecessary costs. 

This work presents a dynamic cost-minimization deadline constrained heuristic for scheduling scientific applica-

tions in a public Cloud environment. The proposed technique aims to exploit the advantages offered in Cloud envi-

ronment while taking into account the VM performance variability and instance acquisition delay to identify a just-in-

time schedule of a scientific workflow which is able to meet its deadline at lesser costs. 

The rest of this paper is organized as follows. Section 2 presents the scientific workflow application model and the 

architecture for workflow execution on elastic resources. Problem definition is presented in section 3, followed by the 

proposed scheduling algorithm and its explanation in section 4. Experiment based performance evaluation is presented 

in section 5. Section 6 reviews the related work and section 7 concludes the work. 

2 ARCHITECTURE FOR WORKFLOW EXECUTION IN CLOUD 

This section explains the application model, Cloud resource model and the overall architecture of the computing framework 

for workflow execution in Cloud, used for this study.  

2.1 Application Model 

A workflow application W = (T, E) is modelled as a Directed Acyclic Graph (DAG) where 𝑇 = { 𝑡1 , 𝑡2, … , 𝑡𝑛}, the set of verti-

ces represents tasks and E is a set of directed edges representing data or control dependencies between the tasks. A depend-

ency 𝑒𝑖𝑗 is a precedence constraint of the form (𝑡𝑖 , 𝑡𝑗), where, 𝑡𝑖 , 𝑡𝑗  ∊ 𝑇, and 𝑡𝑖 ≠ 𝑡𝑗 . This implies that task 𝑡𝑗 (child task) can 

start only after task 𝑡𝑖 (parent task) has finished its execution and the associated data dependencies are transferred to 𝑡𝑗. 

Thus, a child task cannot execute until all its parent tasks has finished execution and the required dependencies, both data 

and control, obliged.  
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A deadline D is defined as the time limit specified by the user for the execution of the workflow. A sample workflow is 

shown in figure 1. Each node represents a task and the edges show the data transfer time between the tasks. 

2.2 Cloud Resource Model 

The Cloud model, assumed in this work, consists of virtualized resources offered by an IaaS Cloud service provider. The 

services include computation services e.g. Amazon Elastic Cloud Compute (EC2) [13] and storage services e.g. Amazon 

Elastic Block Store [14] used as a local storage device for storing the input/output files. All computation and storage services 

are assumed to be in the same data centre or region so that average bandwidth between computation services is roughly 

equal. Further, computation services are offered in form of different types of virtual machines (VMs). These VM types have 

varied configurations for CPU type, memory size and are available at different prices. It is assumed that there is no limitation 

on the number of VM instances leased (used) by an application. Also, when a VM is leased, it requires an initial boot time 

for its proper initialization before it is made available to the user. Similarly when a VM is released it again requires some 

time for proper shutdown. The pricing model is based on a pay-as-you-go billing scheme similar to the current commercial 

Clouds and the users are charged for the number of time intervals they use (lease) a VM, even if the leased VMs have not 

been completely used in the last time interval. The time interval is specified by the Cloud provider. For example Cloud pro-

viders such as Amazon, charge the users based on the time interval of one hour. Thus, even if a VM is used only for few 

minutes, one has to pay for the whole hour. However, some service providers like Google Cloud Platform [24], have recently 

started with short time intervals and have per minute pricing model with a minimum of 10 minutes billing period. Since the 

internal data transfer is free in most Cloud environments, the data transfer cost is assumed to be zero. Further, though real 

Cloud providers charge for the storage services used for storing the input/output data files based on the allocated volume, 

they are not accounted for in the proposed model since these costs are independent of the scheduling algorithms. In the 

Cloud resource model, VM type (𝑉𝑀𝑣) is defined by a two-tuple {(𝐸𝑇𝑡𝑖
)𝑣, 𝐶𝑣} which specifies its estimated processing time 

for each task 𝑡𝑖 and cost per time interval respectively. It is assumed that the estimated processing time for the tasks on 

different types of VMs can be achieved using some existing performance estimation techniques [15] (e.g. analytical model-

ling [16], empirical modelling [4] and historical data [18], [19]). The cost of running a task 𝑡𝑖 on a VM of type 𝑉𝑀𝑣, is calcu-

lated as ⌈
 ( 𝐸𝑇𝑡𝑖

)
𝑣

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
⌉  × 𝐶𝑣. Further, the data transfer time 𝑇𝑇(𝑒𝑖𝑗) between tasks scheduled on different VMs is calculated 

as
 𝑑𝑡𝑖

𝛽
, where 𝑑𝑡𝑖

 is the size of the output data file to be transferred from 𝑡𝑖 to 𝑡𝑗 and 𝛽 is the average bandwidth within the 

Cloud datacentre. The only exception is when the parent task 𝑡𝑖 and child task 𝑡𝑗 both are scheduled on the same VM, in 

which case, the data transfer time 𝑇𝑇(𝑒𝑖𝑗) becomes zero. 
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Fig 2. Computing platform model for executing scientific workflows on Cloud resources 

2.3 Computing Platform Model 

Figure 2 depicts the computing platform model for workflow execution on Cloud resources. The computing platform, used 

in this study, is similar to the one used in [20]. Since Cloud requires users to provision the appropriate amount of resources 

to run their applications (by identifying the resource type and the lease period), two main stages are involved when planning 

the execution of a workflow in a Cloud environment. In the first stage resource provisioning is done which involves identi-

fying and provisioning the appropriate computing resources for executing workflow tasks. The second stage involves gen-

erating a task execution schedule by mapping tasks onto appropriate resources.  
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A user submits a workflow along with the associated QoS requirements e.g. deadline constraint and resource specifications 

to the workflow management system (WMS). The deadline constraint specifies the time limit and the resource specifications 

describe the resource requirements (compute, memory, I/O) of the applications. Given these inputs, the WMS would auto-

matically identify and provision the required resources, schedule tasks onto the provisioned resources and manage the 

workflow execution. In order to reduce the cost of running the application, the WMS acquires the resources as and when 

they are needed and releases them immediately after use. WMS consists of three main modules: Resource Provisioning Module, 

Workflow Scheduling Module and Execution Manager. Resource Provisioning module consists of two sub-modules: Resource 

Capacity Estimation Module and Resource Procurement Module. Resource Capacity Estimation module analyses the workflow 

structure to determine the amount of resources required. The Resource Procurement Module negotiates with the IaaS re-

source provisioning system to acquire the identified amount of resources. The Workflow Scheduling Module, in coordina-

tion with the Execution Manager, identifies the mapping between the provisioned resources and the tasks of the workflow. 

The scheduled tasks are then executed by the Execution Manager. . The main difference between this computing model and 

other traditional high performance computing models is that resource allocation is workflow driven and the resource set 
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size may vary during runtime. 

3 PROBLEM DEFINITION 

Resource provisioning and scheduling heuristics may have a number of objectives. The proposed work focusses on finding 

a just-in-time schedule to execute a workflow on an IaaS Cloud such that total execution cost is minimized while meeting 

the user defined deadline constraint. In order to identify a schedule bounded by the deadline, it needs to be first ascertained 

if the user specified deadline is achievable. If it is not so, the scheduling problem would not have a feasible solution and 

therefore the user needs to revise the deadline. Once it is ascertained that the deadline is achievable, the goal is to make an 

appropriate scheduling decision for each task of the workflow within the given deadline at minimum possible cost. This 

involves making three decisions at each decision stage, which are as follows. 

Cheapest task-VM mapping: The first decision, called as the cheapest task-VM mapping, is to determine the cheapest instance 

type for each task waiting to be scheduled. 

Cheapest task-VM mapping =  {(𝑡𝑖 → 𝑉𝑀𝑣)}  

Provisioning Plan: The second decision, called as the Provisioning Plan, is to identify the number of instances of each VM 

type required at different stages of the workflow execution based on the status of the running tasks and the Cheapest task-

VM mapping of the waiting tasks. Each VM, 𝑣𝑘 , added to the resource pool of the workflow, has a 𝑡𝑦𝑝𝑒 associated with it 

besides its start time 𝑠𝑡𝑘 and end time 𝑒𝑡𝑘.  

VM Pool ={𝑣𝑘 , 𝑡𝑦𝑝𝑒(𝑣𝑘), 𝑠𝑡𝑘 ,   𝑒𝑡𝑘}  

Scheduling Plan: The third decision called as the Scheduling Plan, is to determine the VM instance 𝑣𝑘 of the resource pool on 

which a task 𝑡𝑖 is to be scheduled with its estimated start time and end time. 

Schedule = {𝑡𝑖 , 𝑣𝑘 , 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒} 

It may be noted that each provisioned VM needs to complete the transfer of all the output data files obtained by executing 

the tasks scheduled on it, to the local storage of the VMs on which the corresponding children tasks are to be scheduled, 

before it is deprovisioned. However, since Cloud providers offer storage services that persist independent of VM lifetime 

(e.g. EBS [14]), the VMs on which a child task is to be executed need not be active when the input data files are being trans-

ferred to the corresponding storage volume. Further, due to performance variation and other delays, the tasks may not 

execute strictly as per the schedule. Therefore each task 𝑡𝑖 , has an associated actual start time (𝐴𝑆𝑇) and an actual finish time 

(𝐴𝐹𝑇) being maintained by the Execution manager. The scheduling algorithm needs to monitor the time difference between 

the actual and the estimated schedules in order to make appropriate decisions for the subsequent unscheduled tasks.  

Based on the above, the problem can formally be defined as follows. Find a schedule S for a workflow application W that 
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minimizes the total cost C of running the workflow and for which the total execution time (TET) does not exceed the work-

flow deadline D. It is thus an optimization problem as depicted in equation 1. 

Minimize C = ∑  𝐶𝑡𝑦𝑝𝑒(𝑣𝑘) ∗  ⌈(
𝑒𝑡𝑘−𝑠𝑡𝑘

𝑡𝑖𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
)⌉

|𝑉𝑀 𝑝𝑜𝑜𝑙|
𝑘=1                                                                                      (1) 

subject to TET ≤ D     Where, TET=  max
𝑡𝑖

{(𝐴𝐹𝑇(𝑡𝑖)}  

4 THE PROPOSED WORKFLOW SCHEDULING ALGORITHM 

  
The proposed algorithm is named as just-in-time (JIT-C) workflow scheduling algorithm for a Cloud environment, which 

makes appropriate scheduling decisions just before the workflow tasks are ready for execution. In order to make appropriate 

scheduling/provisioning decisions, in the event of performance variation, the proposed algorithm uses a monitor control 

loop. Inside each loop, progress of running tasks is continuously monitored and resource provisioning/scheduling decisions 

are made based on the most recent information.  

In order to accommodate for the VM acquisition delay, the algorithm takes as input, the expected VM acquisition time and 

makes the provisioning decisions accordingly. As discussed in section 1, VM termination delay does not adversely affect the 

deadline constraint of the workflow. Moreover, service providers now offering short billing intervals the effect of termina-

tion delay on cost is greatly reduced and hence is not accounted for in the proposed algorithm. 

This section first discusses the basic definitions used in this work before elaborating the proposed scheduling algorithm. 

Finally, its operation is illustrated through an example. 

Table 1 lists the notation used in the work. 

Table 1. Notation 
Symbol Meaning 

VMset = {VM1,VM2, …VMm} Set of all VM types offered by the service provider 

D User defined deadline of the workflow 

ET (ti, VMv) Execution Time of task ti on VM type VMv 

TT (eij) Data Transfer Time from task ti to tj 

MET (ti ) Minimum Execution Time of task ti 

{tentry} Tasks without any parent 

{texit} Tasks without any child 

EST ( ti) Earliest Start Time of task ti 

EFT ( ti) Earliest Finish Time of task ti 

AST ( ti) Actual Start Time of task ti 

AFT ( ti) Actual Finish Time of task ti 

XST( ti) Expected Start Time of task ti 
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XFT ( ti) Expected Finish Time of task  ti 

LST( ti) Latest Start Time of task  ti 

LFT( ti) Latest Finish Time of task  ti 

 

XET( ti,VMv) 

 

Expected Execution Time of the tasks of the critical path starting at 

      ti on VM type VMv 

XIST (vk) Expected Idle Start Time of an active VM vk 

VM_Pool_Status 5-tuple for each VM vk in the VM pool {(vk, type(vk), st, , XIST, et)} 

Acquistiondelay Expected VM acquisition time 

MET_W Minimum Execution Time of the Workflow 

CLI ( 𝑣k) Current Lease Interval of VM 𝑣k 

 

4.1 Basic Definitions 

 
The definition of some of the basic terms, used in the model, are as follows. 

 
a) 𝑀𝐸𝑇 (𝑡𝑖 ): Minimum Execution Time of a task 𝑡𝑖  is defined as the execution time of 𝑡𝑖 

 on a VM instance type 𝑉𝑀𝑣 ∈

𝑉𝑀𝑠𝑒𝑡, which has the minimum execution time 𝐸𝑇 (𝑡𝑖, 𝑉𝑀𝑣) among all the available VM types. It is calculated as 

given in equation 2. 

          𝑀𝐸𝑇 (𝑡𝑖 ) =  min
𝑉𝑀𝑣∈ 𝑉𝑀𝑠𝑒𝑡  

{𝐸𝑇 (𝑡𝑖, 𝑉𝑀𝑣)}                                                                                             (2) 

b) 𝐸𝑆𝑇 (𝑡𝑖 ): Earliest Start Time of a task 𝑡𝑖  is defined as the time at which 𝑡𝑖 
 can start its execution, after all its prede-

cessor tasks are scheduled on the fastest VM types and associated data dependencies have been transferred to 𝑡𝑖 
. It 

is obtained as given in equation 3.  

𝐸𝑆𝑇 (𝑡𝑒𝑛𝑡𝑟𝑦
 

) = 0                

 𝐸𝑆𝑇 (𝑡𝑖 ) =  max
𝑡𝑝∈𝑡𝑖′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡 

{𝐸𝑆𝑇 (𝑡𝑝) + 𝑀𝐸𝑇(𝑡𝑝) + 𝑇𝑇 (𝑒𝑝𝑖)}                                                                                          

c) 𝐸𝐹𝑇 (𝑡𝑖 ): Earliest Finish Time of a task  𝑡𝑖  is defined as in equation 4. 

        𝐸𝐹𝑇 (𝑡𝑖 ) =  𝐸𝑆𝑇 (𝑡𝑖) + 𝑀𝐸𝑇(𝑡𝑖)                                          (4) 

d)  𝑋𝐹𝑇 (𝑡𝑖 ): Expected Finish Time of a task 𝑡𝑖 , scheduled on VM 𝑣𝑘 ,  is defined as in equation 5.  

                                            𝐴𝑆𝑇(𝑡𝑖) + 𝐸𝑇 (𝑡𝑖 , 𝑡𝑦𝑝𝑒(𝑣𝑘)) , if  𝑡𝑖  is in execution                                              

                                          max
𝑡𝑝∈𝑡𝑖′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

 {𝑋𝐹𝑇(𝑡𝑝 ) + 𝑇𝑇 (𝑒𝑝𝑖) } + 𝐸𝑇 (𝑡𝑖 , 𝑡𝑦𝑝𝑒(𝑣𝑘)) , if  𝑡𝑖  is waiting for execution  

e) 𝑋𝑆𝑇 (𝑡𝑖 ): Expected Start Time of a task 𝑡𝑖 
 is defined as the estimated time at which 𝑡𝑖  can start its execution after all 

its predecessor tasks have been scheduled. It is calculated as in equation 6. 

 

     𝑋𝐹𝑇  (𝑡𝑖 ) = 
(5) 

(3) 
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           𝑋𝑆𝑇( 𝑡𝑒𝑛𝑡𝑟𝑦) = 𝑎𝑐𝑞𝑢𝑖𝑠𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦                                                                                                                

           𝑋𝑆𝑇( 𝑡𝑖) = max
𝑡𝑝∈𝑡𝑖′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

 {𝑋𝐹𝑇(𝑡𝑝 ) + 𝑇𝑇 (𝑒𝑝𝑖) }  

f) 𝑋𝐼𝑆𝑇 (𝑣𝑘): Expected Idle Start Time of an active VM 𝑣𝑘  of the resource pool is the time at which 𝑣𝑘 is expected to 

finish the execution of the most recent task scheduled on it. Thus, if 𝑡𝑝 is the most recent task scheduled on 𝑣𝑘 then 

Expected Idle Start Time is obtained as in equation 7. 

                                           𝐴𝑆𝑇(𝑡𝑝) + 𝐸𝑇 (𝑡𝑝, 𝑡𝑦𝑝𝑒(𝑣𝑘))  , if  𝑡𝑝  is in execution                                                                    

                                      𝑋𝑆𝑇(𝑡𝑝) + 𝐸𝑇 (𝑡𝑝, 𝑡𝑦𝑝𝑒(𝑣𝑘))  , if  𝑡𝑝  is waiting for execution                  

g) 𝐿𝐹𝑇 (𝑡𝑖 ): Latest Finish Time of a task 𝑡𝑖 
 is defined as the latest time at which 𝑡𝑖  can finish its execution such that all 

the tasks are executed before the user defined workflow deadline D. It is calculated as in equation 8.  

          𝐿𝐹𝑇( 𝑡𝑒𝑥𝑖𝑡) = 𝐷                                                                                                                                                               

                𝐿𝐹𝑇( 𝑡𝑖) = min
𝑡𝑐∈𝑡𝑖′𝑠 𝑐ℎ𝑖𝑙𝑑𝑒𝑟𝑛

 {𝐿𝐹𝑇 (𝑡𝑐) − 𝑀𝐸𝑇 (𝑡𝑐 ) − 𝑇𝑇 (𝑒𝑖𝑐) }               

h) 𝐿𝑆𝑇 (𝑡𝑖 ): Latest Start Time of a task 𝑡𝑖 
 is defined as the latest time at which 𝑡𝑖 

 can start its execution such that all the 

tasks are executed before the user defined workflow deadline D. It is obtained as in equation 9.   

             𝐿𝑆𝑇( 𝑡𝑖) =  𝐿𝐹𝑇( 𝑡𝑖) − 𝑀𝐸𝑇( 𝑡𝑖)                                                                                                                                                    

i) 𝑋𝐸𝑇  (𝑡𝑖 , 𝑉𝑀𝑣): Expected Execution Time of critical path (longest execution path) starting at 𝑡𝑖  on VM type 𝑉𝑀𝑣 is 

defined as the total time it would take to execute the entire critical path starting at 𝑡𝑖 
 on VM type 𝑉𝑀𝑣. It is calculated 

as in equation 10. 

           𝑋𝐸𝑇( 𝑡𝑒𝑥𝑖𝑡 , 𝑉𝑀𝑣) =  𝐸𝑇 (𝑡𝑒𝑥𝑖𝑡, 𝑉𝑀𝑣)                                                                                                                             

                 𝑋𝐸𝑇( 𝑡𝑖 , 𝑉𝑀𝑣) =  𝐸𝑇 (𝑡𝑖, 𝑉𝑀𝑣) + max
𝑡𝑐∈ 𝑡𝑖

′𝑠 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
{ 𝑋𝐸𝑇(𝑡𝑐, 𝑉𝑀𝑣  )} 

j) 𝑀𝐸𝑇_𝑊:  Minimum Execution Time of the Workflow is defined as its critical path length (longest execution path), 

when all the tasks are executed on the fastest VMs. It is calculated as given in equation 11. 

  𝑀𝐸𝑇_𝑊 = max
𝑡𝑖∈𝑊

(𝐸𝐹𝑇(𝑡𝑖))                                                                                                                                                    (11) 

k) CLI (𝑣𝑘): Current Lease Interval of a leased VM 𝑣𝑘  defines its current lease time span for which it will be charged. 

Given the time at which 𝑣𝑘 is provisiond (𝑠𝑡𝑘), unit of time used for billing (time interval) and the index of its cur-

rent time interval(𝑛), CLI (𝑣𝑘) is calculated as given in equation 12. 

CLI (𝑣𝑘) = [ 𝑠𝑡𝑘 , 𝑠𝑡𝑘 + 𝑛 × 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙]                                                                                                                        (12) 

                            

       𝑋𝐼𝑆𝑇 (𝑣𝑘)  = 

(6) 

(7) 

(8) 

(10) 

(9) 
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4.2 The Proposed Algorithm (JIT-C) 

 
The pseudo code of the proposed JIT-C algorithm is listed as Algorithm 1. It begins by verifying the achievability of the 

deadline D specified by the user. For a deadline to be achievable, it should be greater than the Minimum Execution Time of 

the Workflow, 𝑀𝐸𝑇_𝑊 [39]. Therefore, the algorithm first evaluates 𝑀𝐸𝑇_𝑊 and compares it with the user specified dead-

line D. If D is greater than 𝑀𝐸𝑇_𝑊, the algorithm continues to find the appropriate schedule, otherwise the user is 

prompted to revise the deadline D. 

Once the achievability of the user specified deadline is ascertained, the algorithm progresses to identify the required sched-

ule by employing a pre-processing step and a monitor control loop. The pre-processing step is intended to reduce the 

runtime overhead of the algorithm by bundling pipeline tasks into a single task. The monitor control loop maintains the 

updated information of the running tasks and accordingly makes dynamic provisioning and scheduling decisions for the 

waiting unscheduled tasks. The remainder of this section explains the proposed algorithm in detail. 

4.2.1 Pre-processing 

In order to reduce the runtime overhead of the algorithm, the workflow is pre-processed to combine pipeline tasks (figure 

3) into a single task. This helps in saving the data transfer time involved in transferring data to the next stage of the pipeline 

and also accelerates dynamic scheduling/provisioning plan generation. Figure 4 illustrates an example of pre-processing. 

Tasks T1 and T2 are combined and treated as one task T1+T2. This allows T2 to be executed on the same site where T1 is 

executed enabling T2 to use the temporary results stored locally. It helps in avoiding the data transfer time between T1 and 

T2 if they would execute on different sites and also reduces the run time overhead of the monitor control loop. The pre-

processing steps are elaborated in the algorithm 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 2. Pre-processing (W) 

Input: DAG 𝑊(𝑇,𝐸) of a job consisting of n tasks.   

 

1. Begin 

2. 𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒 ← {𝑡𝑒𝑛𝑡𝑟𝑦} 

Fig 3. Pipeline workflow Fig 4. Pre-processing 
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3.  While 𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒 is not empty 

4.     𝑡𝑝 ← 𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒(𝑓𝑟𝑜𝑛𝑡) 

5.       𝑆𝑐 ← {𝑡𝑐| tc is the child of 𝑡𝑝 } 

6.       If  𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑆𝑐) = 1 and 𝑡𝑐 has only one parent 𝑡𝑝 

7.             Replace 𝑡𝑝 and 𝑡𝑐  with  𝑡𝑝+𝑐  

8.              Set  𝑡𝑝+𝑐 as the parent of  𝑡𝑐
′𝑠 children tasks 

9.               Update ET(𝑡𝑝+𝑐)  

10.               Add 𝑡𝑝+𝑐  to the 𝑓𝑟𝑜𝑛𝑡 of  𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒 

11.          Else 

12.               Add 𝑡𝑝′𝑠  children to the 𝑟𝑒𝑎𝑟 of  𝑡𝑘𝑠𝑞𝑢𝑒𝑢𝑒 

13.        End if 

14.    End While 

15. End 

 
 

4.2.2 Monitor Control loop 

After pre-processing, the proposed algorithm provisions the cheapest applicable resources required for executing the entry 

tasks, sends them for execution to the execution manager and enters into a monitor control loop. Since the entry tasks are 

the first tasks to be scheduled, the Expected Start Time (XST) of the entry tasks is set to the expected VM acquisition time. 

Within each monitor control loop, the algorithm updates the Actual Start Time (AST) of the scheduled running tasks, iden-

tifies the tasks whose parent tasks have been scheduled and are running (to-be-scheduled tasks) and then makes appropriate 

provisioning/scheduling decisions using the PlanandSchedule procedure. The monitor control loop continues until all work-

flow tasks are scheduled. At each stage, the cheapest applicable VM type for a task is determined by the CheapesttaskVMmap 

procedure and if a new VM is required at time T, request for the VM is made at time T- expected VM acquisition time to ensure 

that the VM is available when it is required. The entire process is described in algorithm 1. 

Algorithm 1.  Just-in-time Workflow Scheduling  
Input:  

          DAG 𝑊(𝑇,𝐸) of a job consisting on n tasks 

          1 x m cost matrix C of the m VM types offered by the Cloud provider 

          n x m ET matrix of execution time of tasks 𝑡𝑖 ( 𝑖 = 1 𝑡𝑜 𝑛) on each VM type  𝑉𝑀𝑣( 𝑣 = 1 𝑡𝑜 𝑚) 

          n x n TT matrix of transfer time between tasks 

          User specified deadline D of the job 

          VM acquisition time 𝑎𝑐𝑞𝑢𝑖𝑠𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦 

          Lease Time interval interval 

1. Begin  

2. Compute 𝑀𝐸𝑇_𝑊 using equations 2, 3, 4 and 11 

3. If D ≥  𝑀𝐸𝑇_𝑊  

4.      Call Pre-processing( W) 

5.      Compute MET, LFT and XET matrices using equations 2, 8 and 10 respectively 

6.      {𝑡𝑒𝑛𝑡𝑟𝑦} ← Root nodes of the workflow graph W 

7.      For each 𝑡𝑒 ∈ {𝑡𝑒𝑛𝑡𝑟𝑦} 

8.             𝑇𝑜_𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛 ←  𝐶ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑡𝑎𝑠𝑘𝑉𝑀𝑀𝑎𝑝 (𝑡𝑒 )   

9.           Procure a VM instance 𝑣𝑒 of type To_Provision  from the Cloud 
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10.           Schedule 𝑡𝑒 on 𝑣𝑒 at 𝑋𝑆𝑇(𝑡𝑒) 

11.           Update  𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠 

12.      End for 

13.      While all tasks in T are not completed do 

14.            Send the scheduled tasks for execution to the execution manager 

15.            Update AST, XFT of scheduled tasks 

16.              𝑡𝑜_𝑏𝑒_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ← {𝑡𝑖 ∈ 𝑇 | ∀𝑡𝑝 ∈  𝑡𝑖 
′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑡𝑝  is scheduled and running}            

17.            𝑃𝑙𝑎𝑛𝑎𝑛𝑑𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 (𝑡𝑜_𝑏𝑒_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑) 

18.       End while 

19. Else 

20.       Prompt user to specify a deadline above 𝑀𝐸𝑇_𝑊 

21. End If 

22. End    

 

4.2.2.1 PlanandSchedule algorithm 

The PlanandSchedule algorithm receives a set of tasks as input and schedules them on appropriate VM instances. The algo-

rithm, in coordination with the CheapesttaskVMmap, finds a minimum cost schedule in which least possible data transfer 

time is involved. For this, it tries to schedule a task onto its last parent (parent with maximum Expected Finish Time (XFT)) 

site to avoid delays incurred due to data transfer time if it is scheduled onto a different site. The pseudo-code for 

PlanandSchedule is given in algorithm 3. 

For each task  𝑡𝑖 in the task_list, PlanandSchedule calls the CheapesttaskVMmap procedure (line 3) which returns the cheapest 

applicable VM type 𝑣𝑚𝑚𝑎𝑝 on which 𝑡𝑖 can be scheduled. Since VMs are charged for entire time intervals even if they are 

partially utilized, therefore in order to use VMs as densely as possible, the PlanandSchedule algorithm tries to find if  𝑡𝑖 can 

be scheduled on an already leased VM before its Current Lease Interval (CLI) ends. For this, it first tries to find the set of 

active VMs {𝑣𝑘 } of the same type as 𝑣𝑚𝑚𝑎𝑝 such that the following conditions are satisfied. 

i.  𝑡𝑖 can be scheduled on 𝑣𝑘 , such that  𝑡𝑖 uses a portion of the remaining time of CLI (𝑣𝑘) 

ii. Expected Finish Time of 𝑡𝑖 ≤ Latest Finish Time of 𝑡𝑖 

iii. Assuming that  𝑡𝑖 is scheduled on 𝑣𝑘 , for no 𝑡𝑐  such that  𝑡𝑐 ∈  𝑡𝑖
′𝑠 children, Expected Start Time of 𝑡𝑐 > Lastest Start 

Time of 𝑡𝑐 

If such a set of active VMs exist, the VM 𝑣𝑘  which has the least difference between its Expected Idle Start Time (XIST) and 

the Expected Start Time (XST) of  𝑡𝑖 is selected from this set for scheduling 𝑡𝑖. 𝑋𝑆𝑇(𝑡𝑖) and 𝑉𝑚_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠 are updated ac-

cordingly (lines 4-8). Otherwise, PlanandSchedule, tries to find the set of active VMs{𝑣𝑗}, such that 𝑡𝑦𝑝𝑒(𝑣𝑗  ) ≥ 𝑣𝑚𝑚𝑎𝑝 and 

the following conditions are met. 

i.  𝑡𝑖 can be scheduled on 𝑣𝑗 such that  𝑡𝑖 can finish its execution within the remaining time of CLI (𝑣𝑗)  

ii. Expected Finish Time of  𝑡𝑖 ≤ Latest Finish Time of  𝑡𝑖 
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iii. Assuming that  𝑡𝑖 is scheduled on 𝑣𝑗, for no 𝑡𝑐  such that 𝑡𝑐 ∈  𝑡𝑖
′𝑠 children, Expected Start Time of  𝑡𝑐 > Latest Start Time 

of 𝑡𝑐 

If such a set of VMs exist, the VM 𝑣𝑗  which has the least difference between its Expected Idle Start Time (XIST) and the 

Expected Start Time (XST) of 𝑡𝑖 is selected from this set for scheduling 𝑡𝑖. The 𝑋𝑆𝑇(𝑡𝑖) and  𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠 are updated ac-

cordingly (lines 10-14). If none of the active VMs can be utilized for scheduling 𝑡𝑖 , a new VM of type 𝑣𝑚𝑚𝑎𝑝 is procured 

from the Cloud to schedule 𝑡𝑖 (16-18). After all the tasks in the task_list are scheduled, PlanandSchedule deprovisions the idle 

VMs on which no task is scheduled and which have completed the transfer of all the required output files (line 22). 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑.  𝐏𝐥𝐚𝐧𝐚𝐧𝐝𝐬𝐜𝐡𝐞𝐝𝐮𝐥𝐞(𝐭𝐚𝐬𝐤_𝐥𝐢𝐬𝐭)  
 

1. 𝐴𝑐𝑡𝑖𝑣𝑒_𝑉𝑀𝑠 ← List of active VMs in the VM pool 

2. For each 𝑡𝑖 ∈ task_list do 

3.      𝑣𝑚𝑚𝑎𝑝 ← 𝐶ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑡𝑎𝑠𝑘𝑉𝑀𝑀𝑎𝑝 (𝑡𝑖) 

4.      𝐹𝑖𝑛𝑑 { 𝑣𝑘} ∈ 𝐴𝑐𝑡𝑖𝑣𝑒_𝑉𝑀𝑠  s.t. 𝑡𝑦𝑝𝑒(𝑣𝑘) = 𝑣𝑚𝑚𝑎𝑝 and  𝑋𝑆𝑇(𝑡𝑖) ≤ CLI (𝑣𝑘) end time and  

                   XFT (𝑡𝑖) ≤ 𝐿𝐹𝑇(𝑡𝑖)  and for no child 𝑡𝑐 of 𝑡𝑖 𝑋𝑆𝑇(𝑡𝑐) > 𝐿𝑆𝑇(𝑡𝑐) 

5.       If {𝑣𝑘} exists  

6.                  Find the VM 𝑣𝑘 , such that the difference between 𝑋𝐼𝑆𝑇(𝑣𝑘 )  and 𝑋𝑆𝑇 (𝑡𝑖) is                          

                                minimum  

7.                  Schedule 𝑡𝑖 𝑜𝑛 𝑣𝑘 and update 𝑋𝑆𝑇(𝑡𝑖) 

8.                 Update 𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠 

9.      Else   

10.                   Find { 𝑣𝑗} ∈ 𝐴𝑐𝑡𝑖𝑣𝑒_𝑉𝑀𝑠 s.t. 𝑡𝑦𝑝𝑒(𝑣𝑗) > 𝑣𝑚𝑚𝑎𝑝 and  𝑋𝐹𝑇(𝑡𝑖) ≤   CLI (𝑣𝑗) end time  and              

                XFT (𝑡𝑖) ≤ 𝐿𝐹𝑇(𝑡𝑖)  and for no child 𝑡𝑐 of 𝑡𝑖  𝑋𝑆𝑇(𝑡𝑐) > 𝐿𝑆𝑇(𝑡𝑐) 

11.                 If {𝑣𝑗} exists  

12.                       Find the VM 𝑣𝑗 such that the difference between 𝑋𝐼𝑆𝑇(𝑣𝑗 ) and 𝑋𝑆𝑇 (𝑡𝑖) is                          

                                     minimum 

13.                       Schedule 𝑡𝑖  𝑜𝑛 𝑣𝑗, update 𝑋𝑆𝑇(𝑡𝑖) 

14.                      Update 𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠 

15.               Else 

16.                       Procure a new 𝑉𝑀 𝑣 of type 𝑣𝑚𝑚𝑎𝑝 from the Cloud at (𝑋𝑆𝑇 (𝑡𝑖) − 𝑎𝑐𝑞𝑢𝑖𝑠𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦) 

17.                      Schedule 𝑡𝑖 𝑜𝑛 𝑣 at  𝑋𝑆𝑇 (𝑡𝑖)   

18.                      Update 𝑉𝑀_𝑃𝑜𝑜𝑙_𝑆𝑡𝑎𝑡𝑢𝑠 

19.              End if 

20.    End if 

21. End for 

22. Deprovision the idle VMs  

23. Return 

4.2.2.2 CheapesttaskVMmap Algorithm 

The CheapesttaskVMmap algorithm, receives a task 𝑡 as input and returns its cheapest applicable VM type 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝. It is 

observed that though the cheapest VM type may be able to finish a task before its latest finish time, however it may not be 

the best choice. This is because choosing the cheapest VM type for a task, without considering its effect on the children tasks, 

may force the children tasks to execute on faster VMs thus increasing the total cost. Therefore, this work defines cheapest 

applicable VM type for a task as the cheapest type single VM, which if used to schedule all the tasks of the critical path (longest 
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path) beginning at 𝑡, can finish the execution of the entire critical path before the deadline D. Also, as discussed, the objective 

is to find a minimum cost schedule with least possible data transfer time. Therefore, assuming that the task 𝑡 cannot wait 

for a VM to get idle (free) the algorithm first tries to identify if task 𝑡 can be scheduled on the same VM 𝑣𝑝 on which its last 

parent (parent with the maximum Expected Finish Time) is scheduled. For this XST(𝑡), if 𝑡 is scheduled on 𝑣𝑝, is first evalu-

ated and compared with the XIST(𝑣𝑝). If XIST(𝑣𝑝) is less than XST(𝑡) (which means 𝑣𝑝 will be idle at the Expected Start Time 

of 𝑡 and hence is available for scheduling 𝑡) and the critical path (longest path) starting at 𝑡, if scheduled on 𝑣𝑝, can finish its 

execution before the deadline D, then the 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 is set to 𝑡𝑦𝑝𝑒(𝑣𝑝) and the XST(𝑡) is updated accordingly (lines 4-10). 

The PlanandSchedule procedure then schedules 𝑡 on 𝑣𝑝. Otherwise, 𝑋𝑆𝑇(𝑡) is updated and the cheapest VM type 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 

for 𝑡 is identified using the following rules (lines 12-18). 

i. Identify the set {𝑉𝑀𝑘} of VM types such that the critical path starting at 𝑡, if scheduled on a single VM of type 𝑉𝑀𝑘, 

can finish its execution before the deadline D. 

ii. From the set {𝑉𝑀𝑘} identify the VM type 𝑉𝑀𝑗 for which the total execution cost of this critical path is minimum.  

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟒.  𝐂𝐡𝐞𝐚𝐩𝐞𝐬𝐭𝐭𝐚𝐬𝐤𝐕𝐌𝐌𝐚𝐩 (𝐭) 

 

1. Begin 

2. 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 =  𝜙  

3. If 𝑡 is not an entry task then 

4.         𝑙𝑎𝑠𝑡𝑃𝑎𝑟𝑒𝑛𝑡 ← 𝑎𝑟𝑔 ( max
𝑡𝑝∈𝑡′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

{𝑋𝐹𝑇(𝑡𝑝)})    

5.          𝑣𝑝 ← 𝑉𝑀 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝐿𝑎𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡 𝑖𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 

6.        𝑡𝑒𝑚𝑝 ← max ( 𝑋𝐹𝑇(𝑙𝑎𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡), max
𝑡𝑝∈𝑡′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑡𝑝≠𝑙𝑎𝑠𝑡𝑝𝑎𝑟𝑒𝑛𝑡

{𝑋𝐹𝑇(𝑡𝑝) + 𝑇𝑇(𝑡𝑝, 𝑡)})) 

7.         If   ((𝑡𝑒𝑚𝑝 ≥ 𝑋𝐼𝑆𝑇(𝑣𝑝)) and (𝑡𝑒𝑚𝑝 + 𝑋𝐸𝑇( 𝑡, 𝑡𝑦𝑝𝑒(𝑣𝑝))) ≤  𝐷) then 

8.                𝑋𝑆𝑇(𝑡) ← 𝑡𝑒𝑚𝑝 

9.               𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 ← 𝑡𝑦𝑝𝑒(𝑣𝑝)    

10.               Return 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 

11.        Else 

12.           𝑋𝑆𝑇(𝑡) ←  max
𝑡𝑝∈𝑡′𝑠 𝑝𝑎𝑟𝑒𝑛𝑡

{𝑋𝐹𝑇(𝑡𝑝) + 𝑇𝑇(𝑡𝑝, 𝑡)} 

13.        End if 

14.   Else 

15.        𝑋𝑆𝑇(𝑡) ← 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦 

16. End if 

17. Find  {𝑉𝑀𝑘} ∈ VMset  for which (𝑋𝑆𝑇(𝑡) + 𝑋𝐸𝑇(𝑡, 𝑉𝑀𝑘)) ≤ D   

18. 𝑉𝑀𝑗 = 𝑎𝑟𝑔 (min
𝑉𝑀𝑘

 ⌈(𝑋𝐸𝑇(𝑡, 𝑉𝑀𝑘)/𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)⌉ × Cost (𝑉𝑀𝑘)) 

19. 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝 ← 𝑉𝑀𝑗   

20. Return 𝑡𝑎𝑠𝑘𝑣𝑚𝑚𝑎𝑝         

4.3  An Illustrative Example 

An example has been illustrated, in this section, for better understanding of the algorithm. The steps of the algorithm has 

been traced on a sample workflow shown in figure 5(a). The workflow consists of nine tasks 𝑡1 to 𝑡9. The number on each 
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Fig 5. An example of Workflow Pre-processing 
 
  𝑣𝑠    𝑣𝑚  𝑣𝑙  𝑡1   𝑡2  𝑡3    𝑡4   𝑡5  𝑡6       𝑡7   𝑡8  𝑡9      

arc shows the estimated data transfer time between the corresponding tasks. Three types of VMs are assumed 

{𝑉𝑀𝑠 ,𝑉𝑀𝑚, 𝑉𝑀𝑙} (s-small, m-medium, l-large), for the workflow tasks’ execution. Figure 6 depicts the corresponding execution 

time and data transfer time matrix. The time interval of the minimum lease period is assumed to be 10 minutes and the 

acquisition delay is assumed to be 1 minute. Also, the cost of each time interval is assumed to be $ 0.01 for small, $ 0.02 for 

medium and $0.04 for large VM instance types. The user defined deadline is set to be 50 minutes. Although, the proposed 

algorithm is capable of making appropriate provisioning/scheduling decisions in the event of performance variation, for 

simplicity this example assumes that there is no performance variation and the Actual Start Time (AST) of all the tasks are 

same as their Expected Start Time (XST) obtained during the schedule planning. 

The algorithm begins by evaluating the Minimum Execution Time (MET), Earliest Start Time (EST) and Earliest Finish 

Time (EFT) for each task of the workflow using equations 2, 3 and 4 respectively. The values of these parameters are shown 

in table 2. It then compares the Minimum Execution Time of the Workflow, 𝑀𝐸𝑇_𝑊(max
𝑡𝑖∈𝑊

(𝐸𝐹𝑇(𝑡𝑖) = 49 minutes) with the 

deadline D (50 minutes). Since 𝑀𝐸𝑇_𝑊 is greater than D, the deadline is achievable and the algorithm proceeds to identify 

the required schedule. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
     

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 =

𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6
𝑡7
𝑡8
𝑡9

 

[
 
 
 
 
 
 
 
 
4 2 1
6 4 2
16 9 6
12 7 4
11 8 5
7 3 2
18 12 8
13 9 5
15 12 9]

 
 
 
 
 
 
 
 

 

              

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑖𝑚𝑒 = 

𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6
𝑡7
𝑡8
𝑡9

 

[
 
 
 
 
 
 
 
 
0 6 6 6 0 0 0 0 0
0 0 0 0 4 4 0 0 0
0 0 0 0 0 5 0 0 0
0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 8
0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 

                                

(a)        (b) 

 
 
 

Fig 6. (a) Execution time matrix on the available VMs and (b) Data transfer time matrix of the sample task graph 
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(a)  Sample Workflow (b) After Pre-processing 
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                𝑡1      𝑡2     𝑡3     𝑡4+7     𝑡5    𝑡6     𝑡8+9 
 

                𝑣𝑠       𝑣𝑚       𝑣𝑙 
 

 
Table 2. The values of MET, LFT and XET for the workflow of figure 5(a) 

Tasks t1 t2 t3 t4 t5 t6 t7 t8 t9 

MET 1 2 6 4 5 2 8 5 9 

EST 0 7 7 7 13 18 15 27 40 
EFT 1 9 13 11 18 20 23 32 49 

Step 1: Pre-processing the workflow using Algorithm 2: Algorithm 2 pre-processes the given workflow graph (figure 5(a)) by 

combining the sequential tasks 𝑡4, 𝑡7 and 𝑡8 , 𝑡9  into a single task as 𝑡4+7 and 𝑡8+9 respectively. The workflow graph obtained 

after pre-processing is shown in figure 5(b). The modified execution and data transfer matrix is shown in figure 7. 

 

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒 =

𝑡1
𝑡2
𝑡3

 𝑡4+7

𝑡5
𝑡6

𝑡8+9

 

[
 
 
 
 
 
 
4 2 1
6 4 2
16 9 6
30 19 12
11 8 5
7 3 2
28 21 14]

 
 
 
 
 
 

 

     

 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑇𝑖𝑚𝑒 = 

𝑡1
𝑡2
𝑡3

𝑡4+7

𝑡5
𝑡6

𝑡8+9

 

[
 
 
 
 
 
 
0 6 6 6 0 0 0
0 0 0 0 4 4 0
0 0 0 0 0 5 0
0 0 0 0 0 0 4
0 0 0 0 0 0 3
0 0 0 0 0 0 2
0 0 0 0 0 0 0]

 
 
 
 
 
 

 

(a)        (b) 

   

 

After pre-processing, the Just-in-time workflow scheduling algorithm (algorithm 1) computes Minimum Execution Time (MET), 

Latest Finish Time (LFT) and Expected Execution Time (XET) for each task of the workflow using equations 2, 8 and 10 

respectively. The values of these parameters are shown in table 3.  

The algorithm then calls the procedure CheapesttaskVMmap to identify the most cost effective VM type to schedule the 

entry task 𝑡1. CheapesttaskVMmap sets the XST (𝑡1) to 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦 and finds the cheapest applicable VM type for its 

execution. Since out of the three VM types, XET (𝑡1, 𝑉𝑀𝑚) and XET (𝑡1, 𝑉𝑀𝑙) are less than the deadline D, the algorithm 

compares the cost of executing the critical path starting at 𝑡1 on both these VM types and identifies 𝑉𝑀𝑚 as the cheapest 

applicable VM for scheduling 𝑡1. It then procures a VM of type 𝑉𝑀𝑚 , schedules 𝑡1 on it and updates the VM pool status. The 

algorithm enters the while loop at step 13 and executes the loop until all the tasks are scheduled. A trace of the algorithm is 

given in table 4 which lists the values of different parameters during the planning and execution of the workflow tasks. 

Table 3. Values of MET, LFT and XET for the workflow of figure 5(b) 
Deadline D=50 

Tasks t1 t2 t3 t4+7 t5 t6 t8+9 

MET 1 2 6 12 5 2 14 

𝐋𝐅𝐓 14 24 27 32 33 34 50 

𝐗𝐄𝐓(𝑽𝒔) 62 45 51 58 39 35 28 

𝐗𝐄𝐓 (𝑽𝒎) 42 33 33 40 29 24 21 

𝐗𝐄𝐓 (𝑽𝒍) 27 21 22 26 19 16 14 

 
 

Fig 7. (a) Modified execution matrix and (b) data transfer matrix of the workflow in fig. 5(b) after pre-processing  
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Table 4. Values of the parameters during the planning and execution of the workflow tasks of figure 5(b) 

 
 
 
 
 
 
 

 
Entry Tasks 

𝑡1 

 
XST(𝑡1) = 1 
To_Provi-

sion=𝑉𝑀𝑚 
 

      VM Pool Status  
VM id VM Type Start Time Expected 

Idle start 
time 

End time 

𝑣1 𝑉𝑀𝑚 0 3 - 

Schedule 
Task VM id XST XFT 
𝑡1 𝑣1 1 3 

 

 
Iteration 1 

 
 
 
 
 
 
 
 
 
 
 
 

 
to_be_scheduled 

𝑡2  𝑡3  𝑡4+7  

 
XST(𝑡2) = 3 
taskvmmap=𝑉𝑀𝑚 
 
XST(𝑡3) = 9* 
taskvmmap=𝑉𝑀𝑚 
 
XST(𝑡4+7) = 9 
taskvmmap=𝑉𝑀𝑚 
 

     VM Pool Status  
VM id VM Type Start Time Expected 

Idle start 
time 

End time 

𝑣1 𝑉𝑀𝑚 0 16 - 

𝑣2 𝑉𝑀𝑚 (9-1)=8 28 - 

Schedule 

Task VM id XST XFT 
𝑡2 𝑣1 3 7 
𝑡3 𝑣1 7* 16 

𝑡4+7 𝑣2 9 28 
*While evaluating the most applicable VM type for task 𝑡3, CheapesttaskVMmap 

procedure observes that 𝑡2 is already scheduled on 𝑡1 (the lastparent of 𝑡3) and 

𝐸𝐼𝑆𝑇(𝑣1) = 7, which is greater than 𝑡𝑒𝑚𝑝 (= 3) and therefore it updates the 

XST(𝑡3) to 9. The PlanandSchedule module however, while identifying the best pos-

sible plan, finds that 𝑡3 can be scheduled on 𝑣1 and subsequently updates the 

XST(𝑡3) to 7. 

 
Iteration 2 

 

 
to_be_scheduled 

𝑡5  𝑡6  

 
XST(𝑡5) = 11 
taskvmmap=𝑉𝑀𝑠 
 
XST(𝑡6) = 16 
taskvmmap=𝑉𝑀𝑚 
 

VM Pool Status  
VM id VM Type Start Time Expected 

Idle start 
time 

End time 

𝑣1 𝑉𝑀𝑚 0 19 - 

𝑣2 𝑉𝑀𝑚 8 28 - 

𝑣3 𝑉𝑀𝑠 (11-1)=10 22 - 

Schedule 
Task VM id XST XFT 
𝑡5 𝑣3 11 22 
𝑡6 𝑣1 16 19 

 

 
Itera-

tion 3 

 
to_be_scheduled 
𝑡8+9 

 
XST(𝑡8+9) = 28 
taskvmmap=𝑉𝑀𝑚 
 
 
 

VM Pool Status  
VM id VM Type Start Time Expected 

Idle start 
time 

End time 

𝑣1 𝑉𝑀𝑚 0 19 21 

𝑣2 𝑉𝑀𝑚 8 49 49 

𝑣3 𝑉𝑀𝑠 10 22 25 

Schedule 
Task VM id XST XFT 

𝑡8+9 𝑣2 28 49 
 
Total Execution Time = 49 minutes 
Total Cost = $ 0.18  
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5 PERFORMANCE EVALUATION 

This section lists the experiments conducted to evaluate the performance of the proposed algorithm. 
 

5.1 Experimental Workflows 

The proposed algorithm was evaluated on the following four real application workflows used in diverse scientific domains. 

a) Montage: Montage, is an astronomical application which is used to generate custom mosaics of the sky based on a set of 

images. Most of its tasks are characterized as I/O intensive which do not require much processing capacity. 

b) CyberShake: CyberShake is used in earthquake science to characterize earthquake hazards in a region by generating 

synthetic seismograms. It may be classified as a data intensive workflow with large memory and CPU requirements. 

c) LIGO: LIGO workflow is used in gravitational physics for detecting gravitational waves produced by various events in 

the universe. This workflow is characterized as having CPU intensive tasks that consume large memory. 

d) Epigenomics: Epigenomics workflow is used in bioinformatics to map the epigenetic state of human cells on genome-

wide scale. Most of the tasks in this workflow have high CPU and low I/O utilization.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

A detailed description of these workflows is presented by Juve et.al [21]. Figure 8 shows the structure of small size workflows 

for each of these applications. It can be seen that these workflows have different composition and structural properties 

(pipeline, data aggregation, data distribution and data redistribution). 

In order to facilitate evaluation of workflow algorithms and systems, Bharti et al. [22] developed a workflow generator 

to create synthetic workflows of arbitrary size similar to the real world scientific workflows. The generated workflows are 

represented in form of Directed Acyclic Graph in XML (DAX) format and are available in [33]. These DAX files contain 

information such as list of tasks, dependencies between tasks, their computation time and size of the input/output files 

generated by the tasks. In order to evaluate the proposed algorithm, experiments were conducted for each of the above 

applications on three workflow sizes: small (approximately 30 tasks), medium (approximately 100 tasks) and large (approx-

imately 1000 tasks).  

(a) Montage                           (b) CyberShake                             (c) LIGO                            (d) Epigenomics                   

Figure 8. Structure of the workflows used in the experiment [21] 
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5.2 Baseline Algorithms 

Two recent contributions to the workflow scheduling problem in a Cloud environment proposed in [23] and [40] have 

been used as the baseline algorithms. The IaaS Cloud Partial Critical Paths (IC-PCP) algorithm, proposed in [23], is one of 

the most cited algorithms for the same problem addressed in this work; Schedule a workflow in an IaaS Cloud while mini-

mizing the execution cost and meeting the application’s deadline. On the other hand, authors in [40] proposed a robust and 

fault-tolerant workflow scheduling algorithm that handles performance variations of Cloud resources and failures in the 

environment. They proposed three multi-objective resource selection policies to schedule workflows in a Cloud environment 

that minimizes the makespan and cost. Both these algorithms consider many characteristics typical of a Cloud environment. 

For example, they account for the heterogeneous VM instance types which can be provisioned on demand and are charged 

based on pay-as-you-go billing model. They also consider data transfer time in addition to the computation time of each 

task. However, IC-PCP, does not account for the performance variation of VMs and the acquisition delay involved in provi-

sioning a VM which has been taken into consideration both in the proposed work and in [40]. 

The IC-PCP algorithm is based on workflow’s Partial Critical Paths (PCPs). It begins by identifying a critical path, asso-

ciated with each exit node of the workflow. The tasks on each critical path are scheduled on the cheapest available VM, 

preferably to an already leased VM instance, which can meet the latest finish time requirements of all the tasks in the critical 

path. If  none of the already leased VM instances can meet the latest finish time constraints of the tasks, the cheapest instance 

which can finish all the tasks in the critical path while meeting the latest finish time constraint is provisioned and the path 

is assigned to it. This process is repeated until all the tasks of the workflow are scheduled. At the end, each task has a VM 

assigned with the associated start and end time. Also, each leased VM has a start time determined by the start time of its 

first scheduled task and an end time determined by the end time of its last scheduled task. 

The robust scheduling algorithm proposed in [40] is also based on Partial Critical Paths (PCPs). In order to incorporate 

performance variability of VMs, a certain amount of slack time defined by the robustness type is added to the PCP execution 

time which dictates the amount of execution time fluctuations a PCP can tolerate. From the set of all possible VM types, a 

feasible solution set FS for each PCP is created using the budget and time constraints. For each PCP and a given robustness 

type, appropriate VM type is selected from the FS based on certain resource selection policies. Each of the policies have three 

objectives; robustness, time and cost. The priorities among these objectives change for each of the policies: (a) Robustness-

Cost-Time (RCT) policy gives priority to robustness, followed by cost and time (b) Robustness-Time- Cost (RTC) gives pri-

ority to robustness, followed by time and cost and (c) Weighted policy allows users to define their own objective function 

using the three parameters (robustness, time and cost) and assign weights to each of them. Each of these policies sorts the 

feasible solution set based on the first parameter and the solutions with the same first parameter are sorted in the increasing 
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order of second parameter. Solutions with the same first and second parameters are sorted in increasing order of third 

parameter. The best solution from this sorted list is picked and the corresponding VM type is mapped to the tasks of the 

PCP. Further, for fault-tolerance, the authors employed checkpointing at regular intervals. When a task fails, the algorithm 

resumes the task from the last checkpoint. The comparison of the proposed work with the robust scheduling algorithm is 

done only for the parameters which caters for performance variation and the acquisition delays of VMs. Further, the RCT 

and the RTC resource selection policies, in which the objective functions are specified distinctly, have been selected as the 

baseline algorithms. 

5.3 Experimental Setup 

The Cloud service provider is assumed to provide five different types of VMs. The VM configurations and their pro-

cessing capacity are based on the performance analysis of EC2 Cloud offering [7] and are presented in table 5. An ECU is 

the equivalent CPU power of 1.0-1.2 GHz Opteron or Xeon processor. VM pricing is based on the current pricing schemes 

of Amazon EC2 [29]. The average bandwidth between VMs is set to 20 MBps, which is the approximate average bandwidth 

offered in Amazon web services [25].  

Table 5. Types of VMs used in the Experiments 
VM Type ECUs(cores) Processing Capacity 

(GFLOPS) 
Cost per hour 

($/h) 

m1.small 1(1) 4.4 $.04 
m1.large 4(2) 17.6 $.16 

m1.xlarge 8(4) 35.2 $.32 
c1.medium 5(2) 22.0 $.2 

c1.xlarge 20(8) 88 $.8 
 

Billing interval is set to 10 minutes. Processing time of workflow tasks on different VMs were estimated on the basis of 

their processing capacity. Performance variation was modelled in accordance with the Schad et.al. [12]. Similar to [26], the 

performance of each VM is reduced by at most 24% based on a normal distribution with mean 12% and standard deviation 

of 10%. In addition, a data transfer time variation of 19% [12] is modelled, based on a normal distribution with mean 9.5 % 

and a standard deviation of 5%. Boot time of a VM is set to 97 seconds based on the results obtained by Mao and Murphy 

[43] for Amazon EC2 Cloud.  

In order to evaluate the proposed algorithm, a deadline needs to be defined for each workflow. If the deadline is gener-

ously relaxed, there is enough slack time to accommodate for the VM acquisition delay and the performance variation. 

Therefore, a comprehensive evaluation requires performance analysis on all possible deadlines: Strict, Moderate and relaxed. 

To this end, the deadlines were set using the rule as specified in equation 13. 

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝐷 = (1 + µ) × 𝑀𝐸𝑇_𝑊                                                                                                                                   (13) 

Where, 𝑀𝐸𝑇_𝑊 is the minimum execution time of the workflow. µ is the deadline factor defined as follows. 
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       𝐹𝑜𝑟 𝑆𝑡𝑟𝑖𝑐𝑡 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠:          0 ≤ µ < 1.5   

 𝐹𝑜𝑟 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠:  1.5 ≤ µ < 3    

 𝐹𝑜𝑟 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠:      3 ≤ µ < 4.5 

For the experiments, the value of µ is varied with a step length of 0.4. 

5.4 Results and Analysis 

A comprehensive evaluation of the proposed algorithm and its comparison with the baseline algorithms was performed, 

to identify its ability in meeting workflow deadline constraints at reduced costs. To this end, a Cloud environment with 

performance variation and acquisition delays are simulated in accordance with the findings of Schad et.al [12] as discussed 

in section 5.3 and experiments are conducted to analyse the algorithms in terms of meeting the deadlines, makespan and 

the cost incurred in executing the experimental workflows. Each experiment is executed 10 times and the mean of the results 

obtained for large workflows are reported. 

5.4.1 Deadline Constraint Evaluation 

 
To analyse the algorithms in terms of meeting the user defined deadlines, the percentage of deadlines met for each work-

flow with the different deadline factors are evaluated. The results are displayed in table 6.  

Strict Deadlines: It can be observed from the results in table 6 that IC-PCP fails to meet all the strict deadlines for all the 

experimental workflows. RCT displays a better performance with 52.5% hit rate for the LIGO workflow, 47.5% hit rate for 

Montage workflow, 40% hit rate for CyberShake workflow and 37.5% hit rate for Epigenomics workflow. RTC exhibits much 

better performance with 80% of the deadline constraints met for Montage workflow, followed by CyberShake, LIGO and 

Epigenomics workflows with 77.5%, 77.5% and 72.5% hit rate respectively. The proposed JIT-C outperforms the other three 

algorithms at strict deadlines with a hit rate of 88% for Montage workflow, 84% hit rate for CyberShake and LIGO workflows 

and 80% hit rate for Epigenomics workflow. 

Moderate deadlines: Results obtained for moderate deadlines (table 6) show that IC-PCP does not improve its performance 

and fails to meet any of the moderate deadline constraints. RCT slightly improves its performance as compared to its per-

formance on strict deadlines with a hit rate of 55% for LIGO workflows, 52.5% for Montage & Epigenomics workflows, and 

47.5% for CyberShake workflow. Both RTC and JIT-C are best performing algorithms at moderate deadlines with 100% hit 

rate. 

Relaxed Deadlines: As can be seen from the results in table 6, IC-PCP, fails to meet all the relaxed deadlines and registers a 

0% hit rate. RCT registers a marginal improvement with 60% hit rate for Epigenomics workflow, 57.5% hit rate for LIGO, 

55% hit rate for Montage, and 52.5% hit rate for CyberShake workflows. Both RTC and JIT-C algorithms again exhibit 100% 
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performance at relaxed deadlines. 

It is observed, from the above, that IC-PCP performs poorly over all other three algorithms. This is because IC-PCP algo-

rithm fails to capture the performance unpredictability and startup delays of VMs in a Cloud environment. On the other 

hand, as discussed in section 5.2, RCT and RTC policies are designed to bear a certain degree of uncertainty in VM perfor-

mance, which is denoted by its robustness type. RCT policy gives highest priority to robustness followed by cost and 

makespan in order while RTC gives highest priority to robustness followed by makespan and cost in order. Evidently, RTC 

exhibits a better performance in comparison to RCT in terms of meeting the deadline constraints. The inability of RCT to 

improve its performance substantially with increase in deadline factors may be attributed to the following reasons. Given a 

deadline, a robustness type and processing time matrix of the VMs, RCT schedules PCPs on cheapest possible VM services 

such that the deadline constraints are met. Consequently, as deadline increases, RCT schedules PCPs on cheaper VMs which 

in the event of performance variation, exceeds the execution time of the PCP beyond the fluctuation limits it can tolerate, 

thus missing the deadlines.  

Although, with moderate and relaxed deadlines, both RTC and JIT-C exhibit 100% hit rate however at strict deadline 

factors the performance of JIT-C is better than RTC. It may be noted that since RTC schedules the entire PCPs on VMs, 

therefore, at strict deadlines, performance variation of a VM not only adversely effects the execution time of all the tasks of 

the PCP running on it but also the execution start time of tasks of other PCPs. This cascading effect, at times, results in 

missing the strict deadlines. On the other hand, JIT-C algorithm schedules individual tasks just before they are ready for 

execution taking into account the performance variation of the predecessor tasks and hence is able to exhibit a better hit rate. 

Table 6. Percentage of deadline met for each workflow and deadline factor 
Deadline 
Factor 

 MONTAGE CYBERSHAKE EPIGENOMICS LIGO 

 

 

STRICT 

PCP 0 0 0 0 

RCT 47.5 40 37.5 52.5 

RTC 80 77.5 72.5 77.5 

JIT 88 84 80 84 

 

 

MODERATE 

PCP 0 0 0 0 

RCT 52.5 47.5 52.5  55 

RTC 100 100 100 100 

JIT 100 100 100 100 

 

 

RELAXED 

PCP 0 0 0 0 

RCT 55 52.5 60 57.5 

RTC 100 100 100 100 

JIT 100 100 100 100 

 

5.4.2 Makespan and Cost Evaluation  

 
Since, it is intended that the algorithms should generate a cost effective schedule but not at the expense of a longer exe-

cution time, therefore for a holistic comparison, the average makespan and cost needs to be observed simultaneously. Figure 
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10 shows the average execution costs (in $) and the average makespan (in seconds) for each workflow. The reference line 

above each deadline factor corresponds to its associated deadline value. 

It can be seen that for all the workflows and all the deadline factors, IC-PCP generates cheapest schedules but it takes a 

longer execution time than the workflow’s deadline and hence fails to meet any of the deadline constraints. Since the objec-

tive is to generate cheaper schedule while meeting the deadlines, therefore a cheaper schedule obtained at the cost of dead-

line constraint violation is not of any use. The comparison is therefore made among the other three algorithms that manage 

to meet the deadlines.  

As may be seen in figure 10, among RCT, RTC and JIT-C algorithms, RCT generates the cheapest schedules with maximum 

makespan at all the deadline factors, however, it is able to register an average hit rate of only 50%. At strict deadline factors 

of 0 and 0.4, JIT-C generates the most expensive schedules with minimum makespan and registers a better hit rate in com-

parison to the other algorithms. This is because JIT-C takes appropriate scheduling decisions to adapt to the VM performance 

variation in order to limit deadline violations albeit at higher costs. It can be seen that for all the deadline factors other than 

0 and 0.4, RTC generates the most expensive schedules with minimum makespan. On the contrary, as deadline factor in-

creases, JIT-C takes advantage of the increased slack time and generates cheaper schedules which are able to meet the dead-

line constraints. Further, it is observed that on an average for all deadline factors, JIT-C algorithm has 34% lower cost than 

RTC and 28% higher cost than RCT. JIT-C, generates 46% higher makespan than RTC and 16% lower makespan than RCT. 

It may therefore be concluded from the experimental results that JIT-C delivers better performance in terms of meeting the 

deadlines at reduced costs in comparison to the baseline algorithms. At strict deadlines, it is able to deliver highest hit rates 

for all the workflows, though at higher costs. However, as deadlines get relaxed, it is able to capitalize the increased slack 

time available so as to reduce the cost. 

Montage Workflow 
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CyberShake Workflow 

 
Epigenomics Workflow 

 
LIGO Workflow 

 
Figure 10. Makespan and Cost of each Workflow for a given deadline factor 
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5.4.3 Computational Complexity  

To compute the time complexity, suppose the workflow W (T, E) to be scheduled consists of n tasks and e edges. Also, let 

the maximum number of VM types offered by the Cloud provider be m. Since W is a DAG, the maximum number of edges 

in W is  
(𝑛−1)(𝑛−2)

2
 ≅ 𝑂(𝑛2). First, we compute the time complexity for the overall actions of the different modules used in the 

algorithm (Preprocessing, PlanandSchedule and CheapesttaskVMmap) instead of entering into details. The algorithm JIT-C first 

establishes the achievability of the user defined deadline by evaluating the values of MET, EST, EFT and MET_W  (lines 2-3) 

which involves the time complexities of 𝑂(𝑛.𝑚), 𝑂(𝑛 + 𝑒), 𝑂(𝑛)  and 𝑂(𝑛) respectively. Once it is established that the user 

defined deadline D is achievable, the Preprocessing module (line 4) is called to combine pipeline tasks into a single task, which 

involves a time complexity of 𝑂(𝑛). Next, MET, LFT and XET are evaluated for the preprocessed workflow (line 5) with time 

complexities 𝑂(𝑛.𝑚), 𝑂(𝑛 + 𝑒) and 𝑂(𝑛2.𝑚) respectively. The algorithm then schedules the entry tasks and enters into a 

monitor control loop, in which, it iteratively schedules the to_be_scheduled tasks of the workflow (lines 6-18). For each 

to_be_scheduled task, the algorithm first identifies its cheapest applicable VM type, taskvmmap, with the CheapestVMmap mod-

ule which implies a time complexity of 𝑂(𝑛 + 𝑚). Next, the Planandchedule module evaluates the applicability of the available 

Active_VMs to schedule the to_be_scheduled task in  𝑂(𝑛) time (since the number of active VMs is bounded by the number of 

tasks (n), which represents the case when each task is scheduled on a separate VM). If an appropriate Active_VM does not 

exist, a new VM of type taskvmmap (vmmap) is initiated to schedule the task. Subsequently, the AST and XFT of the scheduled 

task is updated in a constant time. Further, since each task may have atmost (𝑛 − 1) sucessors, the list of to_be_scheduled tasks 

is updated with time complexity 𝑂(𝑛). The above process is repeated once for each task of the workflow until all the tasks 

are scheduled. Accordingly, the complexity of the scheduling steps (6-18) of the JIT-C algorithm is 𝑂((𝑛 + 𝑚)𝑛). Thus, the 

overall time complexity of the proposed algorithm is 𝑂(𝑛2.𝑚 + ((𝑛 + 𝑚)𝑛) ) = 𝑂(𝑛2.𝑚). Since the number of VM types, 

offered by a Cloud provider, is constant and small enough to be ignored the overall time complexity of the proposed algo-

rithm is 𝑂(𝑛2). Further deliberating on the internal steps and dependencies involved in the VM assignment procedure for a 

task 𝑡, it may be observed that for each of the Active_VMs, the Planandschedule module verifies that selecting a VM for sched-

uling 𝑡 does not lead to violation of the LSTs of any of its children tasks. Since a task may have a maximum of (n-1) children 

tasks, therefore, the complexity obtained while considering all the dependencies is 𝑂(𝑛3).  

It may be noted that the computational complexity of the baseline algorithms, computed to be equal to 𝑂(𝑛2) in [23] and 

[40], does not include the time complexity involved in identifying the partial critical paths. Thus, if the complexity of iden-

tifying the partial critical paths is taken into account, the time complexity of these algorithms adds up to 𝑂(𝑛3), as has been 

computed in a previous work by Abrishami et al [17].  Thus, the proposed model incurs same computational complexity as 

the baseline algorithms while producing much better results. 
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6 RELATED WORK 

As deliberated in [28], workflow scheduling on distributed resources is an NP-hard problem. Therefore, it warrants to 

apply heuristics/meta-heuristics based techniques for near-optimal or approximate solutions. Most of the existing work on 

workflow scheduling focusses on distributed environments such as Grids and Clusters [15], [34], [35], [36], [37], [38] and 

very few models are proposed for Cloud based environments. This section surveys some relevant contributions to the field.  

Malawski et.al. proposed various dynamic and static algorithms for resource provisioning and scheduling workflow 

ensembles in Cloud [30]. These algorithms aim to maximize the number of executed workflows while meeting the QoS 

constraints of deadline and budget. The proposed solutions acknowledge different delays involved in leasing VM resources 

from the IaaS Cloud, such as VM acquisition and termination delays. Also, the issue of performance variation of VMs is 

addressed by assuming that a task’s execution time may vary based on a uniform distribution. They, however, consider only 

a single VM type ignoring the heterogeneous nature of IaaS Clouds. 

Mao and Humphrey proposed a dynamic approach for scheduling workflow ensembles on Clouds such that all work-

flows are finished within their deadlines at minimum cost [27]. They acknowledge different types of VMs, available at dif-

ferent prices, which can be leased dynamically in accordance with the needs. They proposed a set of heuristics such as task 

bundling and instance consolidation aimed at minimizing the execution cost of the workflow ensemble. The issues of acqui-

sition delays and performance variation of VM instances were addressed by making dynamic scheduling decisions. Their 

approach however does not consider data transfer time between tasks which is of significant importance and affects both 

performance and the cost in scientific workflows especially for data intensive applications. 

The algorithms presented by Mao and Humphrey [27] and Malawski [30] were designed for workflow ensembles and 

not for single workflow instances. More in line, with this work, are the algorithms proposed by Abrishami et al. [23] and 

Poola et al. [40] for scheduling a single workflow instance on an IaaS Cloud. Both of these works are based on workflow’s 

Partial Critical Paths (PCPs). The algorithm proposed in [23] calculates the latest finish time for each task, based on its esti-

mated minimum execution time and the workflow’s deadline. It then schedules all the tasks of a PCP onto a single VM 

instance which can finish all its tasks before their latest finish time. [23] also considers the characteristic features of Cloud 

such as VM heterogeneity, elastic provisioning and interval based pay-as-you-go billing model. However, it does not con-

sider the performance variation and instance acquisition delays which may be encountered in a Cloud environment. The 

authors in [40] proposed robust scheduling algorithm that handles performance variation and failures in a Cloud environ-

ment. They also proposed resource allocation policies that schedules PCPs of a workflow on heterogeneous Cloud resources 

while minimizing the makespan and the cost. The algorithm presented in [40] though considers all the characteristic features 

of Cloud, however it caters only for a certain degree of performance variability. 
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Byun et al. [20] proposed the Partitioned Balanced Time Scheduling (PBTS) algorithm to estimate the minimum number 

of computing resources required at each time interval such that a workflow finishes its execution within the user specified 

finish time. Their algorithm also generates a task to resource mapping and is designed to run online. However, they do not 

consider the heterogeneous nature of computing resources and assumes only one VM type. 

Some authors have used meta-heuristic techniques for scheduling workflows. Pandey et al. [42] proposed a Particle 

Swarm Optimization (PSO) based heuristic to minimize the total cost of execution of a single workflow on a Cloud while 

balancing the load on the available resources. Rodriguez and Buyya [26] developed a Particle Swarm Optimization based 

algorithm to minimize the execution cost of a workflow while meeting the user defined deadline constraints. Yu et al. [31] 

used Genetic Algorithm for cost optimization under deadline constraint and execution time optimization under budget 

constraint. Chen and Zhang [32] proposed an Ant Colony Optimization algorithm with three QoS parameters: time, cost 

and reliability. Szabo at al. [41] proposed a multi-objective algorithm based on evolutionary approach, for execution of data-

intensive scientific applications in a Cloud environment such that the data transferred between tasks and the workflow 

execution time are minimized. Though, these methods exhibit good performance they usually are more time consuming 

than other heuristic based approaches. 

Other existing heuristic based algorithms for scheduling deadline constrained workflows in a Cloud at reduced costs 

[20], [23], [30] [40] either fail to completely incorporate the basic characteristics of Cloud Computing (e.g. heterogeneous 

computing resources, VM performance variation and acquisition delays) or fail to incorporate the characteristics of scientific 

workflows (e.g. data transfer time between tasks) [27]. As a result, these solutions are either unable to meet the user defined 

deadline or generate costly schedules. The proposed work incorporates all the essential characteristic features of Cloud and 

Scientific workflows, and presents a just-in-time resource provisioning and scheduling algorithm for executing scientific 

workflows in a Cloud environment that meets the user specified deadline with reduced cost. 

7 CONCLUSION 

Cloud computing environment offers tremendous opportunities and alternatives to execute large scale scientific workflows. 

Executing scientific applications in Cloud involves making appropriate provisioning and scheduling decisions such that the 

overall execution cost is minimized while meeting a user defined deadline. Towards this, a dynamic cost-minimization and 

deadline constrained heuristic, JIT-C, for scheduling scientific applications in a Cloud environment has been proposed in 

this work. In order to maintain low execution cost, resources are provisioned just before they are needed. The objective of 

meeting the deadline is achieved through continuous monitoring of the running tasks and dynamically making cost effective 

scheduling decisions for subsequent tasks such that the deadline constraint is not violated. The simulation experiments 
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conducted on four well known workflows show that in comparison to the other state of the art heuristics, IC-PCP, RCT and 

RTC, the proposed algorithm displays the highest hit rate in meeting the deadline. Further, it exploits the slack time available 

with relaxed deadlines to produce cheaper schedules with lower execution costs. In comparison to the best performing 

baseline algorithm RTC for the similar purpose, the proposed algorithm JIT-C generate schedules with an average of 34% 

lower costs.  

The proposed scheduling algorithm addresses three major issues of Cloud platforms: VM performance variation, resource 

acquisition delays and heterogeneous nature of Cloud resources. It has the potential to act as a good candidate for its incor-

poration in Cloud resource management. It is proposed that in future, this work has the potential to include robustness 

against the task and the VM failures which may adversely affect the overall workflow execution time. Another future work 

may include the querying ability such as the effect on the cost by changing the deadline and revising it accordingly.  
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