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A free-decay response signal approach is proposed for reliable estimation of frozen soil–pile dynamic prop-
erties of a partially embedded pile. Theoretical consideration and approximations are given for the free vibra-
tion of pile structures, with 20% of the pile cantilevered aboveground and the remaining embedded in
Fairbanks silt. Winter measurements were taken for free-decay response of the pile. A comprehensive fre-
quency spectrum analysis that includes fast Fourier transform, power spectrum density, and spectrograms
is used to evaluate the system's vibration properties. Empirical mode decomposition is then used to decom-
pose the signal to extract specific components for parameter identification. Results show that the response
exhibits time-variant and nonlinear characteristics in the time–frequency domain. Experimental data show
that the tested system exhibits weak nonlinearity. Dominant system parameters, used to characterize frozen
soil–pile interactions, are identified. Two dominant frequencies for a stiff pile embedded 20 ft (6.096 mm)
deep in frozen Fairbanks silt are 97 Hz and 1080 Hz. Damping was found to be approximately 0.016.
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1. Introduction

Dynamic measurements of the vibration spectrum of piles embed-
ded in frozen soils are used to estimate pile integrity or stiffness for
deep pile foundations. That is, the vibration spectrum is used to esti-
mate the integrity or interaction stiffness of a pile in deep soil founda-
tions (Chau et al., 2009; Chau and Yang, 2005; Hua et al., 2008; Ku et
al., 2003; Maheshwaria et al., 2004; Masoumi et al., 2009; Naggar and
Novak, 1995; Ni et al., 2008; Puri and Braja, 1993; Tahghighi and
Konagai, 2007; Takewaki, 2005; Teguh, 2008; Xiong and Yang,
2008). When piles in deep soil foundations are subjected to an earth-
quake, response depends on stiffness and damping. In the past, most
studies have focused on the behavior of piles in unfrozen soils. The re-
sponse of such structures subjected to earthquakes is influenced by
the season. Seismic loading can cause strains in the soil to increase
to a point where the soil shear modulus and stiffness decrease
while damping increases. A change in modal parameters is dependent
on structure boundary condition, material deterioration, or damage.
Modal parameter identification is a well-known method for system
identification and condition monitoring. Traditional methods for
modal parameter identification are commonly used to fulfill general
identification tests in the laboratory or in well-controlled field tests.
In classical experimental modal analysis, the modal parameters (res-
onance frequencies, damping ratios, etc.) for a structure are identified
via forced excitation experiments. However, for many structures, im-
plementation of measured input is not conveniently available. Impact
response measurements in these circumstances are probably the
most popular method of modal parameter identification. For a soil–
pile structure with little or no lumped mass, the test signals acquired
from the soil–pile system tend to be complicated. Many factors—for
example, the nonlinearity of the soil–pile structure—affect the cap-
tured signal, resulting in nonlinear stiffness and nonlinear damping.
A hysteresis condition occurs for a pile and soil that interacts as an in-
elastic material. For example, when the pile pushes against the soil, a
gap will likely form between the soil and the pile at ground line. So,
the response is changed by soil hardening or weakening as the soil
deforms and a gap occurs between the pile and soil at the ground sur-
face. This interaction affects the soil–pile deformation or stiffness.

Analytical and experimental procedures that account for nonlinear
soil behavior are described in the literature (Chau et al., 2009; Chau
and Yang, 2005; Hua et al., 2008; Naggar and Novak, 1995; Tahghighi
and Konagai, 2007). Generally, pile response under dynamic loads can
be analyzed using spring-mass models. Soil springs are obtained from
the shear modulus of the soil. Soil nonlinear effects can be accounted
for by using strain-dependent values from laboratory shear modulus
data. To account accurately for soil nonlinearity, seismic response
analysis for the pile foundation should be conducted in the time do-
main. The proper representation of damping and inertia effects for
the adjacent continuum (soil media) is needed, and the effects of plas-
ticity and soil hardening or softening are usually required. Seasonally
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frozen soil causes significant change in the stiffness and damping ratio
of the soil–pile system (Xiong and Yang, 2008). Despite previous relat-
ed research, an effectivemethod does not appear available for describ-
ing actual in situ dynamic properties and nonlinear response for
frozen soil–structure interaction systems. Therefore, a high level of
uncertainty in characterizing frozen soil adjacent to the pile continues,
causing the prediction of structure system integrity to be elusive.

We propose an approach to reliable estimation of the dynamic
properties of a partially embedded pile in frozen soil. The proposed
method relies on using the free-decay response signal of the pile. The-
oretical considerations and approximations of the free vibration of
the frozen soil–pile structure interaction are presented. Measure-
ments are taken for the free-decay response of the pile, and a compre-
hensive frequency spectrum analysis is conducted. Conventional
spectrum results such as fast Fourier transform (FFT), power spec-
trum density, and spectrograms are used to give preliminary evalua-
tion of the system's vibrational properties in the context of a linear
system. Besides employing conventional approaches for identification
of system response, the empirical mode decomposition (EMD) meth-
od (Huang et al., 1998, 1999; Yang et al., 2004; Yang and Lei, 1999) is
adopted to enhance the characteristics of the testing signal, which is
done to improve identification. Empirical mode decomposition is a
method of decomposing a nonlinear, nonstationary signal into a se-
ries of zero-mean amplitude modulation-frequency modulation
(AM-FM) components that represent the characteristic time scale of
the observation.

Based on this approach, the nonlinearity of the frozen soil–pile
system is estimated. An analysis of the acquired data shows that the
tested frozen soil–pile system exhibits weak nonlinearity and that
the dominant portion can be approximated by a linear model. A sys-
tem identification approach is used to extract modal and damping pa-
rameters, which are used to characterize the frozen soil–pile
interactions under varied conditions. A distinct linear phenomenon
between pile and soil is observed in a specific frequency range. Non-
linear effects are within a wide frequency range. Bouncing phenome-
na, caused by the development of ground surface separation (gap)
between the frozen soil and the pile, are observed.

2. Test setup and measurements

Full-scale pile dynamics tests were conducted on a 16 in. (406 mm)
diameter steel-jacketed reinforced concrete pile (Davis, 2010). A 20 ft
(6.096 mm) pile was imbedded in a soil profile of uniform Fairbanks
Fig. 1. Schematic diagra
silt, with 5 ft (1,524 mm) of the pile exposed aboveground. The hori-
zontal acceleration of the top end of the pile wasmeasured by applying
a horizontal impulse load. Fig. 1 is a schematic diagram of the test setup.

Free horizontal vibration tests were conducted by first applying in-
cremental static loads to about 5000 lb (22 kN). During incremental
loading, pile strains, displacements, and applied load were monitored.
An accelerometer was used to monitor free vibrations that occurred
after suddenly removing the applied load using a quick release. An ac-
celerometer was also used to record free-decay response. A data acqui-
sition systemwas used to store the data. The resultant information was
transferred to a computer for processing. The soil at the site is classified
as Fairbanks silt; its properties were determined by conducting in situ
and laboratory tests. Others have conducted laboratory tests for the
soils at this test site to evaluate the soil properties such as dynamic
shear moduli were determined by laboratory tests (Czajkowski and
Vinson, 1980; Wilson, 1982). Details of the soil properties, described
in the research reports, are not included in this paper. Field experiments
were conducted during December and January (the winter season).

3. Spectrum analysis

Fig. 2(a) shows the FFT of a measured acceleration signal. Two spe-
cific peaks are visible, corresponding to f1=98 Hz and f2=1080 Hz. Fig.
2(b) and (c) show the FFT of three measured acceleration signals
recorded on the same day. Fig. 3 shows the power spectrum density
of three measured acceleration signals for the same day. Note in Fig. 3
that the first specific frequency is less sensitive to test history and the
first specific peak of all three tests is identical, whereas the second spe-
cific frequency is sensitive to test history and the second specific peak of
the three tests iswithin the range of f2=1065–1080 Hz. These data sug-
gest that tests conducted on the same day could slightly change the soil
boundary condition, which is reflected by the change in the second spe-
cific frequency.

If the system is idealized as a linear system, then we may presume
that the two peaks correspond to the first two modes of the system.
Thus, the first-order natural frequency is a horizontal vibration of
f1=97 Hz, and the second-order natural frequency is a horizontal vi-
bration of f2=1080 Hz. The validity of this assumption will be dem-
onstrated later in the paper. Fig. 4 shows a spectrogram of one of
the measured acceleration signals determined from the field test.
Fig. 4(a) is a contour plot showing that four kinds of components
exist. The first component is the dominant one, corresponding to
the specific frequency of f1=97 Hz. The second component consists
m of the test setup.
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(b) FFT of three signals in the range of 50-150 Hz.
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(c) FFT of three signal in the range of 900-1200 Hz.
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(a) FFT of a signal in the range of 0-1400 Hz.

Fig. 2. FFT of a typical measured acceleration signal and the comparison of three signals taken on same day.
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of many components extending to high frequencies, which only exists
for a short period, decaying to zero after 0.02 s. This decay rate can be
attributed to the initial nonlinear interaction of pile and soil. The third
component has harmonics and the characteristics of frequency-varying,
which suggests the existence of nonlinear effect. The final component is
unidentified.

From the three-dimensional plot of Fig. 4(b), however, we can see
that the amplitude of the dominant component with specific frequency

image of Fig.�2
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(a) In the range 50-150 Hz
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(b) In the range 90-1200 Hz

Fig. 3. Power spectrum density of three measured acceleration signals.
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f1=97 Hz is substantially higher than the amplitude of the remaining
three kinds of components. The system's response can be approximated
by the dominant component. Fig. 5 shows a spectrogram of the mea-
sured acceleration signal froma different angle. The envelope of the am-
plitude of the dominant component exhibits an obvious exponential
decay profile, suggesting that the dominant component with a specific
frequency of f1=97 Hz can be used as a characteristic quantity or
index for integrity monitoring or can be used for a soil–pile interaction
Harmonics and frequency-
varying components

Unidentified components
Initial Interaction
components

Dominant component

(a) 2D plot

Fig. 4. Spectrogram of a meas
investigation. To use this dominant component for future analysis, it
must be extracted from the whole signal. The selecting filter technique
can be implemented to extract the dominant component from the orig-
inal signal. However, the EMD method was used to extract the specific
signal and identify the system parameters because of its applicability
to nonlinear problems. Before conducting EMD, we completed a theo-
retical analysis to correlate the analytical results with the experimental
data.
(b) 3D plot

ured acceleration signal.



Fig. 5. Spectrogram of a measured acceleration signal (3D plot).
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4. Theoretical consideration

In this section, a mathematical model is presented to correlate
with the experimental results. Both geometry andmaterial nonlinear-
ities may exist in a soil–pile interaction problem. Since the soil inter-
face has minimal tensile strength, where the soil–pile interface
exceeds geostatic stresses around the pile, a gap will open at the
ground surface. Material nonlinearity is accounted for by incorporat-
ing an advanced plasticity-based soil model. The inelastic model pro-
vides a hysteretic rule that is needed to model the cyclic behavior.
This model is used to relate displacements and tractions. The dis-
placement rate (increment) is used as a variable for the model. An ap-
proximate model (Leissa and Qatu, 2011) was used to correlate with
Fig. 6. Frozen soil–pile vibration model.
experimental data. The schematic of the system is shown in Fig. 6, an
Euler–Bernoulli beam partially resisted by an elastic foundation.

Since stiffness and damping of soil are a function of enviromental
conditions such as temperature andmoisture, whereas natural modes
are functions of stiffness and damping, we can derive the natural fre-
quency dependency on temperature and/or moisture. The sensitivity
of natural modes with respect to temperature can be expressed as,

∂f1
∂T ¼ F1 k Tð Þ; c Tð Þð Þ ð1Þ

in which T is temperature. Obviously, frozen soil has a substantial im-
pact on stiffness and damping of soil. Accordingly, frozen soil will
have a substantial effect on specific natural frequency. If the system
is further simplified as a cantilevered beam, then the following rela-
tionship develops between first-order natural frequency and sec-
ond-order natural frequency, regardless of the geometry and
material parameters of the pile:

f2
f1

¼ 6:27 ð2Þ

In view of the first specific frequency of 97 Hz, identified earlier,
and the second specific frequency of 1080 Hz, the frequencies are
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-50

-40

-30

-20

-10

0

10

20

30

Time (s)

A
m

pl
itu

de

Fig. 7. Time history of a measured acceleration signal.
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Fig. 8. Decomposed components of a measured acceleration signal.
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not complying with the relationship given in Leissa and Qatu, 2011.
As such, the specific frequency of 1080 Hz should not be considered
as the second-order natural frequency of the assumed linear system.

5. Parameter estimations

To decompose the signal as being characterized in the time–frequen-
cy expression (see Figs. 4 and 5), an empirical mode decomposition
method was used instead of filtering to evaluate the response signal.
Empirical mode decomposition (EMD) is a method of decomposing a
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Fig. 9. Power spectrum of the decomposed com
nonlinear and nonstationary signal into a series of zero-mean AM-FM
components that represent the characteristic time scale for the observa-
tion. A multicomponent AM-FM model for a nonlinear and nonstation-
ary signal, x(t), can be represented as,

x tð Þ ¼ ∑
n

j¼1
aj tð Þ cos φj tð Þ

h i
ð3Þ

where aj(t) and φj(t) represent the instantaneous amplitude and the
instantaneous phase of the jth component, and n is the number of
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ponents of a measured acceleration signal.
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Fig. 10. Decomposed signals corresponding to two specific frequencies.
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components. In the EMD approach, the solution is performed by iter-
atively conducting a sifting process. Zero-mean AM-FM components
are called intrinsic mode functions (IMFs), which must satisfy certain
requirements: (1) The number of extreme and the number of zero
crossings in the IMF must equal or differ by no more than one; and
(2) at any point, the mean value of the envelopes defined by the
local maxima and local minima must be zero. In short, the signal is lo-
cally symmetric around the time axis.

The sifting process to find IMFs for the signal x(t)consists of the
following steps:

(1) Find positions and amplitudes of all local maxima and all local
minima in the input signal x(t). Create an upper envelope by
cubic spline interpolation of the local maxima, and a lower en-
velope by cubic spline interpolation of the local minima. Calcu-
late the mean of the upper and lower envelopes; this is defined
as m1(t). Subtract the envelope mean signal, m1(t), from the
original input signal, h(t)=x(t)−m1(t). Check whether h(t)
meets the requirements to be an IMF. If not, treat h(t) as
new data and repeat the previous process. Then set h11(t)=
h1(t)−m11(t). Repeat this sifting procedure k times until
h1k(t) is an IMF; this is designated as the first IMF or c1(t).

(2) Subtract c1(t) from the input signal and define the remainder,
r1(t), as the first residue. Since the residue, r1(t), still contains
information related to longer period components, treat it as a
new data stream and repeat the above-described sifting pro-
cess. This procedure can be repeated j times to generate j resi-
dues, rj(t). The sifting process is stopped when either of two
criteria is met: Either the component, cn(t), or the residue,
rn(t), becomes so small that it is considered inconsequential,
or the residue, rn(t), becomes a monotonic function from
which an IMF cannot be extracted. We finally obtain

x tð Þ ¼ ∑
n

i¼1
cimf i tð Þ þ rn tð Þ ð4Þ

In other words, the original signal can now be represented as the
sum of a set of IMFs plus a residue. Next, apply the Hilbert transform
to all IMFs, cj(t), to derive model parameters including frequency and
damping:

H cj tð Þ
h i

¼ 1
π

∫
∞

−∞

cj tð Þ
t−τ

dτ ð5Þ

After the Hilbert transform, H[cj(t)] and cj(t) form a complex signal
Zj(t):

Zj tð Þ ¼ cj tð Þ þ iH cj tð Þ
h i

¼ aj tð Þeiφj tð Þ ð6Þ

Then the envelop of every IMF can be given by

aj tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cj tð Þ
h i2 þ H cj tð Þ

h ir
;φj tð Þ ¼ arctan H cj tð Þ

h i
=cj tð Þ

n o
ð7Þ

in which aj(t), the instantaneous amplitude of x(t), reflects how the
energy of x(t) varies with time. The term φj(t) is the instantaneous
phase of x(t). The instantaneous frequency ωj(t) is defined as the
time derivative of the instantaneous phase φj(t) as follows:

ωj tð Þ ¼ dφj tð Þ
dt

ð8Þ
Then the original signal x(t) can be expressed as

x tð Þ ¼ ∑
n

j¼1
aj tð Þ exp i∫ωj tð Þdt

h i
ð9Þ

In principle, the measured acceleration response of the pile,ẅ, can
be approximately decomposed by the EMD as follows:

w
::
tð Þ ¼ ∑

k

j¼1
w
::
j tð Þ þ ∑

n−k

i¼1
ci tð Þ þ rn tð Þ ð10Þ

where w
::
j tð Þ is the jth modal acceleration response and ci(t) is the ith

IMF.

ωj tð Þ ¼ ωdj t−θj
ln aij ¼ −ζ1ωjt þ ln rij

ð11Þ

Thus, the damped natural frequency,ωdj, can be obtained from the
slope of the phase angle plot in ωj(t) versus t, and ζ1 can be obtained
from the slope of the plot in ln aij versus time.

The linear least-squares method can be used to fit the plots of
ln aij versus time and ωj(t) versus time.

In the next step, we illustrate how signal decomposition and pa-
rameter identification are performed by using a typical measured
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Fig. 11. Envelopes of the decomposed signals corresponding to two specific frequencies.
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acceleration signal (shown in Fig. 7). Fig. 8 shows the decomposed
components of a measured acceleration signal. From Fig. 8 we can
see that the magnitude of c1 and c5 are much higher than the rest
of the components. To characterize the decomposed signal, the
power spectrum of the decomposed signal is calculated (shown in
Fig. 9). From Fig. 9 we see that the decomposed component c5 has a
specific frequency of 97 Hz and the decomposed component c1 has
a specific frequency of 1080 Hz. The relationship between the two
frequency values is consistent with the above analysis. From Fig. 8
we see that after 0.02 s, c5 is almost the only component. All of the
rest decay nearly to zero. The vibration associated with c5 lasts until
0.3 sec. In the following discussion, we focus on c5 and c1 to identify
the corresponding characteristic parameters. Fig. 10 shows the wave-
forms of the decomposed signals, c5 and c1.

The envelope of waveform of c5 exhibits an exponential shape
that can be readily fitted by an exponential curve, suggesting that
this oscillation can be treated as a single-degree-of-freedom system.
The damping coefficient can be identified as ζ1=0.016 (illustrated
in Fig. 11a). However, the envelope of waveform of c1 does not exhib-
it an exponential shape; instead, it exhibits modulations of both am-
plitude and frequency nonlinear oscillation characteristics, suggesting
strong nonlinear properties of soil–pile interaction in this mode. Fre-
quency change can be attributed to stiffening of soil stress-strain
properties resulting in a change of system stiffness. Furthermore,
multiple harmonics may be attributed to bouncing across the gap
near the ground surface between the soil and the pile. Identification
can be implemented by correlating advanced processing, nonlinear
modeling, and analysis.

This finding is consistent with the analysis in Section 2, where we
illustrate that the corresponding oscillation is unlikely the second
mode of the assumed linear system. If we approximate the data
with exponential curve fitting, damping ratio could be in the range
of 0.07–0.02, but subject to implementations. The specific parameter
is obtained by Eq. (11). Fig. 12 shows the characteristic plots of
decomposed signals c5 and c1 corresponding to the two specific
frequencies.
6. Conclusions

A free-decay response signal was used to describe the experimental
free-vibration-response data for frozen soil–pile structure interaction
(test was conducted using an impulse load). The proposed method
can be used to evaluate the nonlinearity of the system and to conduct
system identification. The specific mode signal can be extracted and
the specific parameters can be identified. This approach provides a
fast way not only to estimate the extent of nonlinearity of the real sys-
tem, but also to approximate modal parameters for the linear and non-
linear modes. This approach helps to guarantee the accuracy and
reliability of employing a vibration signal to monitor the interaction
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response of the frozen soil–pile structure and to investigate frozen soil–
pile interaction under various environmental and seismic conditions.

Results show that the response for frozen soil–pile structure interac-
tion exhibits time-variant and nonlinear characteristics in the time–fre-
quency domain. Results also show that the tested system exhibits weak
nonlinearity. Dominant system parameters, used to characterize frozen
soil–pile interactions, are identified. A 16 in. (406 mm) diameter steel-
jacketed concrete pile, with 5 ft (1,524 mm) aboveground and 20 ft
(6.096 mm) embedded in Fairbanks silt, had two predominant natural
frequencies for the winter months of December and January: 97 Hz and
1080 Hz. Damping for a pile embedded in frozen Fairbanks silt was ap-
proximately 0.016.
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