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Abstract— Neonatal seizures are an important sign of central
nervous system dysfunction and require immediate medical
attention. In this paper a new algorithm is presented for the
detection of seizures in the electroencephalogram (EEG) of
neonates. In contrast to the common approach in the literature,
we define two (rather than one) types of seizures. This paper
presents a new algorithm for the detection of one of these
seizure types, namely a spike train, in the electroencephalogram
(EEG) of neonates. The sensitivity of this algorithm is 98%, the
positive predictive value 86% with a false positive rate of 0.6
per hour. Preliminary results on this subset indicate a clinically
usable algorithm and outperform other published methods. An
algorithm for the second seizure type was also developed but
will be explained in a follow-up paper.

I. INTRODUCTION

Seizures occur in approximately 0.5% of all neonates. The
causes of seizures are many and various, with 90% of all
cases being attributed to biochemical imbalances within the
CNS, hypoxic ischemic encephalopathy, intracranial hemor-
rhages and infarcts, intracranial infection and developmental
(structural) anomalies [12]. The manual detection of these
seizures is usually based on clinical signs in conjunction
with visual assessment of the EEG. In neonates the clinical
seizures are often subtle and and may be missed without
constant supervision [4]. Also many seizures tend to be
subclinical, detected only by EEG monitoring. Furthermore,
EEG analysis requires particular skills which are not always
present around the clock in the neonatal intensive care unit
(NICU). This implies that many seizures are missed [9].
For these reasons an automated system that reliably detects
neonatal seizures would be of significant value in the NICU.
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In the literature many seizure detection algorithms have
been described. The best known methods are based on
computing a running autocorrelation function [8], rhythmic
discharges detection [5] and modeling and complexity anal-
ysis [3]. Others are based on the extraction of features using
entropy, wavelets, frequency content, etc and then training a
classifier ([6], [13], [1]) to correctly categorize these features.

In this paper we will use a different approach. Most
neonatal seizure detection algorithms make no distinction
between different types of seizures. We, on the contrary,
defined two seizure types. The first is the spike train type
(Fig. 1) , the second the oscillatory type (Fig. 2). The
major difference between the two types lies in the fact that
the oscillatory type is a fluent, continuous kind of seizure
whereas the spike train type consists of spikes interrupted
by lower voltage EEG. Different detection algorithms were
developed for the two types. During analysis both algorithms
run in parallel and a detection occurs if one or both of the
algorithms detects a seizure. A novel approach is that the
developed algorithms will mimic a human observer reading
EEG. In case of a spike train a human observer looks for a
repetitive pattern of very similar repeated spikes. Therefore
an algorithm based on this strategy must first find these
spikes and then check their repetitiveness and similarity. In
this paper we will present the spike train detection. The
oscillation detection will be discussed in a follow-up paper.

Fig. 1. Example of spike train seizure, dominant on channel 3.

II. METHODS

A. Spike train detection

According to the ”human observer approach” we need to
look for highly correlated, repetitive, spikelike segments of
EEG. Therefore, the algorithm consists of two steps. The



Fig. 2. Example of oscillation seizure, dominant on channel 4.

first step detects highly energetic segments in the EEG. The
second step analyses the correlation between these segments.

1) Adaptive segmentation based on non-linear energy:
The first step in the segmentation is the calculation of the
energy of the EEG by means of a non-linear energy operator
(NLEO). This operator is useful to segment the EEG in
quasi-stationary segments [2] and is given by (see Appendix
1).

ψg[X(n)] = X(n−l).X(n−p) −X(n−q).X(n−s), (1)

l + p = q + s

with Xn the current sample, Xn−l the l-th sample before
sample n, etc. As parameter setting, we used l=1, p=2, q=0
and s=3 [2].

Subsequently, the root mean square (RMS) of the energy
is calculated with a moving window of 50 samples and 30
samples of overlap. The resulting RMS signal is a smoothed
version of the frequency-weighted energy of the signal.

Next, this signal is divided into overlapping epochs of 15
seconds. Each epoch is thresholded so that only the highest
energy signals in the epoch remain. The threshold is adaptive
to the signal and defined as:

threshold =
1
2
.std(epoch).q3(epoch) (2)

with std(...) and q3(...) the standard deviation and 75th
percentile of the epoch, respectively. The 75th percentile
guarantees that only the highest energy parts of the signal
are selected. The standard deviation adapts the threshold
to the variability in the signal. This means that signals
with a high variability get a higher threshold. Due to the
overlap of the windows some parts of the epoch may be
analysed multiple times. Identical segmentations to previous
segmentations are rejected. Fig. 3 shows an example of the
results from segmentation of a spike train.

Next, the spikiness of each high-energy segment is calcu-
lated. The spikiness is defined as:

spikiness =
|q3(segment) − q1(segment)|

|q3(background) − q1(background)|
(3)

with q3(...) and q1(...) the 75th and 25th percentile, respec-
tively. The background is defined as the EEG with a length

Fig. 3. Segmentation of a spike train. After segmentation only the highest
energy segments of the EEG remain.

of the considered spike just before and after the spike (Fig.
4). The goal of this step is to reduce the number of segments
used for further analysis, by selecting only the segments
surrounded by lower voltage EEG. Introduction of this step
was found to lower the false positive rate of the algorithm.

Fig. 4. Definition of the spikiness of a segment. This segment has a
spikiness of 3.8.

Besides a certain spikiness, there are a few secondary
constraints on the high-energy segments. The minimum
length of a segment is 100ms, the maximum length is 2s
and the minimum amplitude is 5 µV. These constraints are
not very strong but they help to reduce the number of
correlations which must be calculated in the next step and
so the calculation time is reduced. They also decrease the
number of false positives by preventing detection of very
small signals (like noise). Those segments that meet all
criteria are considered true spikes, and enter the next stage
of the analysis.

2) Analysis of the correlation: Our human observer de-
tects a seizure when there is a pattern of repetitive and
similar spikes. Our algorithm checks similarity between
signals by calculating the correlation between them. To
determine if the detected spikes follow a repetitive pattern,
the cross-correlations between a certain segment and all
other segments present in the preceding 10 seconds of EEG
are calculated. If the segments have different lengths, the
shortest segment is padded with zeros to the length of the
longest. A seizure is detected if the current segment has
a maximum cross-correlation higher than 0.8 with a least
5 other segments in the preceding 10 seconds. These 10
seconds are then labeled as seizure activity. Fig. 5 shows
2 similarly spike segments and their cross-correlation.



Fig. 5. (A), (B): Two segmented spikes, note the added zeros in figure
(A). (C) cross-correlation of the segmented spikes. The maximum value of
the cross-correlation is a good measure of similarity between two segments.

TABLE I
Results of the algorithm on 6 patients (tr: training set, te: test set).

Patiënt Sensitivity (%) PPV (%) FP/h EEG duration (h)

1 (tr) 95 81 0.29 24.4
2 (tr) 100 100 0 7.5
3 (tr) 100 86 0.4 7.5
4 (te) 95 85 1.3 7.5
5 (te) 100 78 1 7.5
6 (te) X X X 7.5
mean 98 86 0.6 10.88

III. DATA

All data were recorded at the Sophia Children’s Hospi-
tal (part of the University Medical Center Rotterdam, the
Netherlands). The dataset consisted of long-term video-EEG
monitoring of 6 full-term neonates with 13 up to 17 EEG
channels according to the 10-20 system of electrode place-
ment. The duration of the EEG was 24.4h for one neonate
and 7.5h recordings for the others. Sampling frequency was
256 Hz. All EEG’s where scored for seizure activity by an
experienced neurologist and all showed seizures of the spike-
train type. The algorithm was applied channel by channel.
If it detected a seizure in 1 channel, the whole EEG at
that time instance was labeled as seizure activity. No spatial
information is used because most seizures start very locally
and are hence only captured by one EEG channel.

IV. RESULTS

We defined a training set of 3 patients and a validation set
of 3 patients. An overview of the results is given in Table 1.
The first 3 patients are the training set. Figures 7 and 8 show
2 examples of a detected seizure. The highlighted segments
are those which are correlated with at least 5 other segments
in the preceding 10 seconds. The first highlighted segment
represents the start of the detection.

Sensitivity and positive predictive value (PPV) are defined
as [10]:

Sensitivity = (SZdet/SZtot).100 (4)

with SZtot the number of seizures marked by the neurologist,
and SZdet the number detected by our algorithm.

PPV = (EV sz/EV tot).100 (5)

with EVtot and EVsz the total number of detected events and
the number of detected seizures, respectively. Sometimes a
single seizure is detected several times by the algorithm. In
our approach all events detected by our algorithm that are
part of a single seizure are considered as one EVsz detection.

Another good measure of the performance of the algorithm
is the number of false positives per hour (FP/h). This measure
represents an important indicator of the practical usability of
the algorithm, because each FP implies that somebody in the
ICU will have to check the patient unnecessarily.

In Table 1, the results of patient 6 are not shown. The
entire EEG was labeled as seizure and this is due to a
very pronounced ECG artefact. In this case, the algorithm
detects the QRS complexes of the ECG captured by the
EEG-leads (example Fig. 6). In principle, this problem can be
solved again by mimicking how a human observer treats such
artefacts. That is, by correlating the detected pattern with
the directly measured ECG (which is usually co-registered
with the EEG for this very purpose). If the time between the
successive spikes is equal to the time between heartbeats,
the detected pattern is most likely due to the ECG and not
to seizure activity. This artefact did not occur in the training
set.

Fig. 6. (A): EEG with with strong ECG artefact (most dominant on channel
8). (B) corresponding ECG.

If we exclude patient 6 the sensitivity of the algorithm was
found to be 98% with a PPV of 86% and 0.6FP/h.

V. DISCUSSION

The sensitivity of this algorithm is very good and its
false positive rate is acceptable for online monitoring. The
preliminary results on this subset are much better than those
of other published algorithms which get a PPV ranging from



Fig. 7. Example of a detected seizure. The highlighted segments are
correlated with a least 5 other previous segments present in the previous 10
seconds of EEG.

Fig. 8. Example of a detected seizure. The highlighted segments are
correlated with a least 6 other previous segments present in the previous 10
seconds of EEG.

10 - 49% at a sensitivity between 73 - 98% [10]. Of course
we only tested a small number of patients and more extensive
tests will be needed to corroborate these results.

Our algorithm is resistent to artefacts (proven by the high
PPV) because only very repetitive artefacts can be falsely
detected. The strong criterion of at least 5 similar spikelike
segments in 10 seconds of EEG prevents spurious detection
of many artefacts (like motion/muscle artefacts), whereas it
does not disturb the detection of a seizure.

However, the most important drawback of the present
algorithm is that some artefacts may also consist of a repet-
itive spike pattern e.g. the ECG artefact. Further research
is needed to separate these false detections from the true
positives.

The presented algorithm had no patient-specific optimiza-
tion and we would like to keep it this way. However, if this
algorithm is going to be implemented in an bedside monitor
it should be possible to manually adjust the sensitivity and
FP/h by adapting relevant thresholds. The 2 most important
thresholds are the number of correlated spikes in a 10 second
window (now set to 5) and the correlation value between
different spikes (now set to 0.8).

VI. APPENDIX 1

Teager proposed a simple non-linear energy operator
(NLEO) (ψteager) , given here in its discrete form [7]:

ψteager[X(n)] = X2
(n) −X(n−1).X(n−2) (6)

with Xn the current sample, Xn−1 the previous sample, etc.
The most important property of this operator is the behaviour
for a pure sinewave:

ψteager[A.cos(ωon+ θ)] =
1
2
.A2.ω2

o (7)

This formula indicates that the output will be proportional to
the square of both the amplitude and the frequency. In this
regard, the NLEO may be considered superior to other energy
estimators that simply average the square of the signal and
are independent of frequency. A more generalized version is
given in [11] as:

ψg[X(n)] = X(n−l).X(n−p) −X(n−q).X(n−s), (8)

l + p = q + s

It can be shown that for l 6=p and q6=s, ψg is more robust
to noise. If the input signal contains additive noise then
the output will not contain a component reflecting the input
noise. A possible selection for the parameters is l=1, p=2,
q=0 and s=3 [2].
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