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Fellow, IEEE, Kankar Bhattacharya, Fellow, IEEE, Abolfazl Mosaddegh, Student Member, IEEE, and

Bharat Solanki, Student Member, IEEE,

Abstract—This paper describes the development of a
freeware Smart Residential Load Simulator to facilitate the
study of residential energy management systems (EMSs)
in smart grids. The proposed tool is based on Matlab-
Simulink-GUIDE toolboxes and provides a complete set of
user-friendly graphical interfaces to properly model and
study smart thermostats, air conditioners, furnaces, wa-
ter heaters, stoves, dish washers, cloth washers, dryers,
lights, pool pumps, and refrigerators, whose models are
validated with actual measurements. Wind and solar power
generation as well as battery sources are also modeled,
and the impact of different variables such as ambient tem-
perature and household activity levels, which considerably
contribute to energy consumption, are considered. The pro-
posed simulator allows to model the way appliances con-
sume power and helps to understand how these contribute
to peak demand, providing individual and total energy con-
sumption and costs. In addition, the value and impact of
generated power by residential sources can be determined
for a 24-hour horizon. This freeware platform is a useful
tool for researchers and educators to validate and demon-
strate models for energy management and optimization,
and can also be used by residential customers to model and
understand energy consumption profiles in households.
Some simulation results are presented to demonstrate the
performance and application of the proposed simulator.

Index Terms—Appliance modeling, home energy man-
agement, household energy consumption, smart grid,
smart loads, smart houses.

I. INTRODUCTION

SMART grids coupled with renewable energy resources
can yield significant economic and environmental benefits.

The smart grid’s ability to improve efficiency, make better use
of existing assets, enhance reliability and power quality, reduce
dependence on imported energy, and minimize environmental
impacts is a market force that has substantial economic value

[1]. These grids are growing fast, but if this growth is
to be sustained, their value must become more clear to all
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stakeholders, especially residential consumers. The latter are
an important part of electricity demand, since for example, the
residential sector accounted near 20% of the electrical energy
demand in Ontario, Canada in 2016 [2]; also, residential
energy consumption in the US was 22% of the total consumed
energy in 2015 [3], and similar values were reported for the
European Union in 2016 [4].

Space heating/cooling systems, water heaters, refrigerators,
dishwashers, cloth washers, dryers, lighting, and cooking
ranges are the most common appliances in the residential sec-
tor [2]–[4]. Heating, ventilation, and air conditioning (HVAC)
and water heaters are major energy consumption devices.
Therefore, controlling the residential end-use electricity de-
mand can have a significant impact on reducing the peak
demand and optimize energy consumption, which can be
accomplished in smart or intelligent homes with automation
systems to control residential loads [5], [6].

Several studies have been reported in the literature on the
prediction of load-shape and optimization methods for energy
management, since some appliances can be easily scheduled
to reduce energy cost and consumption without affecting
customer comfort. For instance, a model to minimize the
peak load by scheduling pool pumps, air conditioner and
water heaters (WH) is proposed in [7]; a mixed integer linear
programming model is developed to minimize the energy cost
and maximize customers’ comfort while taking into account
the influence of price signals on the household. Some projects
focus on scheduling the HVAC and/or water heater by making
use of wireless thermostat technology to optimize costs and
thermal comfort, as in [8].

References [9]–[15] explore different ways of creating
appliance-level load models for load management purposes,
based on statistical data to predict the load-shape of the
demand. Several models and simulators have been developed
to model HVAC systems and buildings. For example, the
EnergyPlus software [16], which models thermal energy in
buildings, allows analyzing the impact of HVAC and lighting
systems in buildings from a thermal perspective, but it has
not been designed for determining electrical load profiles
of households, including the impact of appliances and other
building loads and local sources on its electricity demand.
The Commercial HVAC (CHVAC) software calculates the
maximum heating and cooling loads for commercial buildings
[17]. The Applications Program for Air-Conditioning and
Heating Engineers (APACHE) is a graphical user interface to
analyze thermal performance and energy use of buildings [18].
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None of the existing modeling tools take into account other
appliances and some are not easy to use. Hence, there is a
need for user-friendly simulators to understand how appliances
interact with each other with respect to energy consumption,
as well as facilitate the study and application of mathematical
models for home EMSs, which is the main purpose of the work
presented here. The presented simulator allows computing load
profiles of buildings that could be used by other simulators
such as Homer [19], where electric load is used as an input
for the design of hybrid diesel-renewable microgrids.

This paper presents a novel toolbox, entitled the Smart Res-
idential Load Simulator (SRLS), with a user-friendly graphical
interface to simulate optimal on/off decisions of residential ap-
pliances to study residential energy profiles on a 24-hour hori-
zon, which can be used, for example, to develop home EMSs.
Local power generation such as photovoltaic and wind genera-
tors together with battery energy storage are considered in the
simulator. The developed SRLS can be used to study, demon-
strate, and evaluate different energy management strategies for
residential households, and it can also be used as an educa-
tional tool that is available to the research community as open
source code at: https://uwaterloo.ca/power-energy-systems-
group/downloads/smart-residential-load-simulator-srls.

The rest of the paper is structured as follows: Section
III presents a general description of the proposed simulator,
together with the associated graphical interfaces, and explains
the main appliances’ interfaces and models. An example is
presented to demonstrate the functionality of the proposed
simulator in Section IV. Finally, the main conclusions and
contributions of the presented work are provided in Section
V.

II. THE SMART RESIDENTIAL LOAD SIMULATOR

The developed SRLS is a new Matlab-based simulator that
represents most of the important residential loads and power
sources. The toolbox is provided with a complete graphical
interface as shown in Fig. 1. Factors such as ambient temper-
ature, which play an important role in energy consumption of a
household, are considered as user-defined inputs to the SRLS.
Other inputs are electricity time-of-day rates (off-peak, mid-
peak, and on-peak) to represent Time of Use (TOU) tariffs; the
user can also define real time prices (RTP). All the appliances
shown in Fig. 1 are modeled in the SRLS and can be simulated
individually or as a group. Observe in Fig. 1 that the simulator
allows to define the characteristics of the family, i.e., number
and ages of the people in the household, so that the residents’
activity levels can be represented in the relevant appliance
models such as the water heater and the house thermal model.

Fig. 2 shows the interface for plotting the simulation results,
where consumed and generated power by appliances and
sources are illustrated together with the levels and costs of
consumed and generated energy. In addition, the user can
select each appliance and resource individually to plot its
energy consumption/generation profile. The charge and dis-
charge profiles of battery storage, which are inputs to the
model, can be also depicted. Moreover, the interface provides
consumption and generation tables where the cost of consumed

energy by appliances and sources during off-, mid-, and on-
peaks price periods are detailed. Finally, gas consumption and
its costs can also be shown in the interface. The models of
the appliances and energy sources considered in the SRLS are
explained next.

A. Household
The material properties of buildings influence the thermal

performance and their energy consumption patterns. The walls,
floor, roof and windows have central thermal conductivity, and
allow circulation of warm/cold air in the house. The energy
consumption depends on the house characteristics, specifically
on its geometry, defined by the size and the numbers of rooms,
which are assumed to be from 1 to 4, modeled using the
average of length, width and height of walls and windows.
The thermostat is assumed to be placed in one of the rooms.
Fig. 3(a) shows the graphical interface to represent the house,
where the user inputs the required information.

Fig. 3(b) depicts the circuit model used to represent a
single room, which considers the outside temperature Tamb,
the thermal characteristics of the room (i.e., thermal resistance
of walls Rw and windows Rc, and thermal capacitance of
the wall Cw, and indoor air Cin), and the Air Conditioner
(AC) or furnace system, which are represented by the Qac−ht

thermal source. Using this model, the wall’s temperature Tw,
room’s temperature Tin and power consumption, and the
corresponding cost of consumed energy can be calculated.
The following equations representing the indoor temperature
dynamics can be obtained from this figure [20], [21]:

dTw
dt

=
Qs

Cw
+

Tamb

RwCw
+

Tin
RwCw

− 2Tw
RwCw

(1)

dTin
dt

=
(Qin −Qac ht)S (t)

Cin
− Tin
Cin

(
1

Rw
+

1

Rc

)
− Tw
RwCin

where S(t) is a binary variable representing the ON (1) or
OFF (0) state of the AC/furnace.

B. Air Conditioner (AC)
The AC is often specified by its cooling capacity in terms

of British Thermal Unit (BTU). This capacity is the amount
of energy used by the equipment to remove heat from the air,
and regulate the temperature and humidity in a room or the
entire house. There are two types of AC systems: window and
central AC. A typical window AC has a capacity of around
6,000-18,000 BTU. A central AC with split configuration uses
ducts or pipes to distribute cool air to one or more rooms, and
its typical capacity is around 9,000-60,000 BTU. Fig. 4(a)
shows the graphical interface of the AC in the SRLS, where
the user can select the capacity of the equipment.

The modeling of the AC is represented schematically by the
heat flow diagram in Fig. 4(b). The Energy Efficiency Ratio
(EER) denotes the amount of cooling effect provided by the
AC as follows:

EER = 3.412
Qin

Win
= 3.412

Qin

Qout −Qin
(2)
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Fig. 2: Graphical interface that presents simulation results.

where Qout is the required energy used to extract the heat
Qin from the rooms, and the electrical input Win represents
the energy required to do this work.

C. Furnace (HT)

Central gas furnaces are normally used in households to
inject hot air into the rooms. The most common type in Canada
and the US is a natural gas fired furnace inside an enclosed
metal casing, which injects and distributes heated air in the
house [22]. The graphical interface of the furnace is shown in

Fig. 5(a), where only the capacity and Annual Fuel Utilization
Efficiency (AFUE) values are needed as inputs.

The heat flow diagram of the furnace is depicted in Fig.
5(b), where the efficiency is known by the furnace AFUE
rating. The following equation represents the thermal model
of the furnace:

AFUE = 3.412
Qin

Qht
= 3.412

Qin

Qin −Qout
(3)

where Qht represents the capacity of the furnace and Qin

represents the heat inside the house.
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D. Smart Thermostats

Programmable thermostats are used in most households with
central AC and/or HT [23]. Such thermostats are designed to
adjust the temperature according to user preferences at differ-
ent times of the day, and helps regulate the home temperature
in both summer and winter. Therefore, the thermostat can
be set according to the family’s schedule and preferences to
regulate the temperature of the house.

Both conventional and programmable thermostats are con-
sidered in the SRLS. Fig. 6(a) illustrates a conventional ther-
mostat, where the user has to select the desired temperature.
Fig. 6(b) depicts a programmable thermostat where the user
can specify four time periods, as well as upper and lower
temperature set points. Fig. 6(c) illustrates the thermostat
model used in the simulator, where Thi and Tlo are the upper
and lower temperature limits, respectively, within which the
thermostat maintains the house temperature. These values are
set by the user pressing the +/− button.

E. Water Heater (WH)

The WH is a cylindrical tank enclosed by insulation and
covered with a metal sheet, which can be simulated by using
a classical thermal model [24], [25]. Storage tank water heaters
are the most common types used in North America; therefore,
electric and gas storage tank water heaters are modeled in the
SRLS.

Fig. 7(a) shows the graphical interface of the WH in the
SRLS. The inlet water and ambient temperatures around the
tank, capacity of the WH, and its efficiency are considered
as inputs. The power consumption is reported in W when an
electric WH is chosen, and in BTU for a gas WH. In both
cases, typical values for inlet water and ambient temperatures
are provided as default, corresponding to values applicable in
southern Ontario, Canada. Generally, the efficiency of electric
WHs are in the range of 85-94%, while for gas WHs is 50-
65% [26].

Fig. 7(b) shows the circuit used to model the WH, which
comprises the mass of water (m), specific heat of water (Cp),
characteristics of fiber glass (CW , UA), gas or electric power
(Qegh), and the efficiency (η) [24]. The following equation
represents the energy flow in the WH that is used to implement
the model:
dTw
dt

=
mCp

Cw
Tinlet +

UA

Cw
Tamb −

UA+mCp

Cw
+Qeghη (4)
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where Tw is the temperature of the tank’s wall, Tinlet is the
inlet water temperature, and Tamb is the ambient temperature
around the tank. The procedure to calculate the hot water usage
is explained in detail in [27], which depends on the number
and age of the household occupants.

F. Stove

Normally, gas or electricity stoves are used in residential
houses. About 87% of families in the US use electric range-
ovens for cooking [3], and similarly in Canada [28]; therefore,
only electrical stoves are considered in the SRLS. Energy
consumption in the stove is calculated by multiplying the con-
sumed power by the duration of use. The graphical interface of
the electrical stove is depicted in Fig. 8, where it is possible
for the user to select the number of heating elements and their
corresponding heat intensity for three time periods in a day.

G. Lighting

The most common types of lights used in residential houses
are the traditional incandescent bulbs, Compact Fluorescent
Lights (CFL), fluorescent tubes and recently Light Emisor
Diode [22]. Residential houses usually use a mixture of these
three types of lights. CFL and fluorescent tubes are more
expensive, but they have a longer life and use much less
energy, thus resulting in significant savings in energy and cost.
Fig. 9 shows the graphical interface for the lighting system in
the SRLS. The number, power rating, and operation (time and
duration of use) of the lights are input in this interface, from
which their energy consumption can be readily calculated.
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H. Refrigerator

The refrigerator is modeled as a thermal system with an
insulation of fiber glass. The corresponding model is similar
to the room model mentioned earlier; therefore, it can be rep-
resented using the same circuit model by simply changing the
parameter values [20]. Fig. 10 depicts the graphical interface
used to define the refrigerator main characteristics.

I. Dryer

Gas and electric dryers use large amounts of energy in a
household [29]. Electrical dryers are commonly used in North
America, and hence only these are considered in the SRLS.
Fig. 11(a) shows the interface for the dryer, where the user can
select up to three loads per day and the corresponding duration
of use. An example of the energy consumption pattern of a
dryer is shown in Fig. 11(b) [30], where power P1 is in the
range of 2,000 to 2,500 W during the first period, and P2 is
500 W for the next period. In the SRLS, a typical rating of
2,000 W is assumed for the first 60 minutes of use, and 500
W for the remaining period.

J. Dishwasher (DW)

The DW represents a small share of residential appliances’
energy consumption. However, DWs draw high power during
short periods of time, which makes them relevant for peak
demand programs [31]. Fig. 12 shows the graphical interface
and the sequence of operations of a typical DW. At first, the
DW fills up with water for about 15 minutes and a constant
power P1 is drawn; it then provides electric heating, increasing
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its power to P2 for a time period that depends if it is connected
to hot water or cold water [32]. After that, hot water and
detergent are sprayed over the dishes, draining and refilling
alternatively with rinse water; this consumes power P3. The
dishes are dried using first an electric resistance element
consuming P4 power, and then hot air remaining in the DW,
consuming P5 power. According to [32], about 55% of the
energy used by a DW goes to heat the water when connected
to a WH, and 65% if cold water is used. The time period of
power consumption depends on the efficiency of the DW.

The SRLS model fits the curve in Fig. 12(b) to the Yellow
Energy Guide under standard conditions, and the specifications
provided by the user in the graphical interface shown in Fig.
12(a). Three loads per day, including duration and time of use,
can be entered by users.

K. Cloth-washer (CW)

The CW process is controlled by a step timer or an
electronic control device. Electrical energy is used mainly for
driving the drum motor and heating up the water, if it is not
hot enough, in spite of the fact that about 2/3 to 3/4 of the
water used is cold water for rinsing [31], [33].

Fig. 13(a) shows the graphical interface for the CW in the
SRLS. The number of loads per day, time and duration of use,
water temperature, and efficiency can be input by the user. An
example of the CW power demand profile is shown in Fig.
13(b), where the P1 and P4 denote the powers corresponding
to the filling and draining of rinse water, and P2 and P3
correspond to heating the water. The model developed in the
SRLS determines this powers from the Yellow Energy Guide
and the user defined inputs.
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Fig. 13: Cloth-washer model: (a) graphical interface, and (b)
power consumption cycle.
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Fig. 14: Pool pump model: (a) graphical interface, and (b)
power consumption cycle.

L. Pool Pump
Considerable amount of energy is needed for heating and

maintaining the water temperature in pools, in addition to the
energy used by the pool pump to circulate and filter the pool
water. Pool water heating can be accomplished with solar
power, gas, or by an electrical heat pump. In a swimming
pool, 76% of electrical energy is used for pumps, 6% for
chlorination cells, 14% for electric heaters, and 4% for timers
and controls [34].

Fig. 14 presents the interface for the user to define up to
three loads per day, specifying the time and duration of use.
A typical pool pump consumption pattern is shown in Fig.
14(b). Generally 200-500W single-phase pumps are used for
residential swimming pools, with 3 to 8 working hours per
day for water filtration, depending on the pool size, pump
size, environmental conditions such as outside temperature and
sunshine, water filtration equipment, how often the pool is
used, and other pool manufacturer recommendations. Usually,
pool pumps are controlled by electro-mechanical or electronic
on/off clock timers with start- and end-times manually selected
by users.

M. Local Generation Resources
Wind and solar photovoltaic (PV) power generation are

considered as local power sources supplying residential loads.
These power sources are not dispatchable and vary during the
day; therefore, they are typically integrated with some storage
devices, such as batteries, to store the generated energy for
a certain period of time, releasing it when demand increases.
Besides being expensive, batteries have limited capacity; thus,
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Fig. 15: Graphical interface to define local power generation
profiles: (a) wind, (b) solar PV, and (c) battery.

if there is a surplus of energy produced by, for example, a
domestic PV system, this extra energy could be sold to the
local grid.

Fig. 15 depicts the interfaces for the user to define wind,
PV, and battery systems, using a simple modeling approach
of defining output profiles. In Fig. 15(a) and Fig. 15(b)
different power outputs per hour are defined for wind and
PV generations. Fig. 15(c) shows the interface for the battery,
where the user can select the kWh rating and SOC hourly
profile for the day. The sum of these three power sources
could supply the load or the surplus could be injected into the
grid.

III. RESULTS AND DISCUSSION

Several examples of applications and appliance model vali-
dation of the developed simulator are presented and discussed
next to demonstrated the usefulness and accuracy of the SRLS.

A. House Load Profile

An AC and gas WH are considered here as an example
of residential loads, and solar PV and a battery are selected
as sources of local power to illustrate the application of the
SRLS. Thus, an AC with 48,000 BTU is used to cool the
air in a house comprised of four rooms, inputting the required
information for the rooms as shown in Fig. 3. Fig. 4 illustrates
how the user should input the AC parameters in the simulator.
The thermostat is set at 23oC with a +/− 0.5oC tolerance, as
in Fig. 6(a). Fig. 7 shows the information required to model
the gas WH. A stove, pool pump, and lighting loads, as well
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Fig. 16: Water heater results.
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as wind, solar PV, and battery sources are also included in this
simulation; the washers and dryer are not considered here.

The simulator takes approximately 20 s to solve the model
equations, with time intervals of 24 s, generating data for
the user to analyze the behavior of the simulated appliances.
Fig. 2 shows the consumed and generated energy by some of
the loads and local generation sources, respectively. The WH
and AC loads and the corresponding total consumed energy
are shown along with the battery output. The cost of energy
used by the AC and WH, and the cost of energy saved from
battery are also illustrated. The defined SOC of the battery
and the inside house temperature, outside temperature, and
AC power are also shown in this figure. The Consumption and
Generation tables in the figure illustrate the value of consumed
electricity and gas, and the generated energy by the local
generation, during off-, mid-, and on-peak hours, respectively.
Fig. 16 shows the hot water temperature and consumption,
and power generated by the SRLS for the water heater, and
Fig. 17 illustrates the household demand profile, together with
all considered appliances and sources.

B. Validation of the SRLS models
Measurements were taken on October 12, 2016, for an AC

of 12000 BTU (Mirage Absolute X brand) cooling a 4x4x2
m3 room in a coastal city in Mexico. The ambient temperature
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and solar radiation were taken from a forecasting public
website, and the appliance set point was fixed at 26oC. The
room temperature was obtained using a data logger Amprobe
TR 300, and power was measured with a power quality
analyzer FLUKE 434. Fig. 18 shows both the measurements
and simulation results obtained by the SRLS, which clearly
validate the AC model.

Similar results were obtained for a small refrigerator, as
shown in Fig. 19, where the similitude of the temperature
variations inside the fridge obtained with the SRLS and
measured using a dataloger clearly validate the model [34].

Finally, the cloth washer, dryer, dishwasher, and stove
models are discussed in [30], where it is mentioned that
the models were obtained in cooperation with manufacturers
of appliances and electric utilities, and that the appliances’
demand were discussed with experts familiar with regional
case studies in selected European countries.

C. SRLS applications

The simulator has been applied to generate residential
energy profiles for various studies. Thus, in [35], it was used to
generate data for the development of neural network models
of existing urban residential smart loads to represent these
loads in a Distribution system Optimal Power Flow (DOPF)
for feeder optimal control. In [36], the simulator was used to
create thermal energy profiles of remote residential loads to
study the application and impact of thermal energy storage
on remote hybrid microgrid operation and control. These two
SRL applications are discussed next in more detail.

1) Peaksaver Plus Modeling: Smart loads include various
appliances controlled through an EMS, smart meters, and two-
way communication connections among appliances, the Local
Distribution Company (LDC), and/or external data sources
(e.g., weather stations and energy prices) [37]. Since customer

behavior may vary by location, preferences, and time of usage,
information on customer preferences and the activity level of
their appliances are important. However, the only measurement
available to LDCs from most residential houses is the energy
consumption data derived from their smart meters. These
measurements vary widely across households; however, as the
load profiles are aggregated, they become smoother, with less
variations, thus allowing to better model the load at the feeder
level. In order to reduce the peak load at the feeder level, LDCs
may send peak demand cap or temperature setpoint signals to
HVAC systems to modify the load profiles and reduce the
customers’ peak demand, as in the case of the Peak Saver
Plus (PS+) program [38].

To study the effect of controllable smart residential loads
in distribution feeder optimal operation, power consumption
of different houses with realistic data for all appliances, for
all days in July 2013, was modeled in the SRLS. For each
house, every appliance was defined in the SRLS considering
their usage; the household ambient temperatures and Time
Of Use (TOU) tariffs were also input in the simulator. The
consumption and generation profiles of each appliance and
energy source for each household were obtained with the
SRLS, together with the energy costs at different times of the
day. The load profiles were obtained for two different cases:
normal AC operation without receiving a PS+ signal, and
operation with PS+ signals that increase by 2◦C the thermostat
set point.

As shown in Fig. 20, the residential load dataset from each
house, including the characteristics and time of use of each
appliance, was modeled in the SRLS, and the obtained load
profiles from a group of houses were then added to obtain
an aggregated model of the load at a phase and node in a
distribution feeder. These results were then used to create a
Neural Network (NN) model of the aggregated loads, which
was integrated into a DOPF model. This DOPF with the NN
load model of PS+ loads was used to obtain the optimal
dispatch of a practical distribution feeder with 41 nodes,
assuming certain percentage of PS+ controllable loads, and
thus evaluate the impact and relevance of PS+ on the optimal
operation of distribution feeders.

2) Thermal Demand Modeling: The SRLS was used to
determine the thermal load profiles of typical Canadian houses
in remote communities, to be utilized as the thermal output of
an Electric Thermal Storage (ETS) system to maintain temper-
ature in residential homes. An ETS model was developed with
the help of the thermal profiles obtained with the SRLS, and
integrated into a microgrid EMS to study the application and
impact of ETS systems on the operation of remote microgrids.

The thermal profiles of microgrid households were obtained
based on the number and dimensions of rooms and windows.
For the kinds of households in remote communities, four large
rooms with typical window dimensions were used. In the
SRLS, the furnace is considered as a heating source during
winter, based on its BTU and AFUE, yielding its thermal
output in kW. The smart thermostats model was used in
the simulator to define temperature set points and upper and
lower temperature limits. Ambient temperature profiles for an
average winter day were used. With all these information, the
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thermal demand of the house in kW, which is the output of
furnace, was obtained using the SRLS for a typical household
in these communities.

IV. CONCLUSIONS

A new toolbox based on Matlab-Simulink has been de-
veloped to model residential energy consumption and local
generation resources. The simulator has been described to-
gether with the models and graphical interfaces of the main
residential energy consuming appliances and local genera-
tion, and an example illustrating its performance and ap-
plication has been presented. The main objective of the
proposed simulator is to allow studying, demonstrating,
and teaching energy management of residential households,
and this tool can be useful for researchers to validate
their models for energy management and optimization, and
can also be used by customers and educators to under-
stand and explain residential energy demand and supply.
The simulator is open source code available for the in-
terested reader at: https://uwaterloo.ca/power-energy-systems-
group/downloads/smart-residential-load-simulator-srls.
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