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The formation of carbon–carbon bonds mediated by metal
surfaces and nanoparticles continues to attract considerable
attention.[1, 2] Recent work on the interaction of allyl halides
(C3H5X) with a range of metal surfaces revealed different
reactivity that depends on both the metal as well as the
halide.[3,4] Of all the metal surfaces examined, silver surfaces
appear to be the most effective at mediating carbon–carbon
bond coupling of allyl halides to give 1,5-hexadiene. Two
distinct pathways have been observed:[4a] 1) dissociative
adsorption of C3H5X to give surface-bound allyl groups,
which then undergo coupling, and 2) a coupling reaction
between C3H5X and a surface-bound allyl group. Surface
defects play a significant role in the selectivity of 1,5-
hexadiene formation which increases from 20% to greater
than 60% when chlorine atoms are preadsorbed on silver
surfaces.[4b] Also of interest are the largely forgotten results of
Tamura and Kochi,[5] who synthesized silver nanoparticles
over 30 years ago and showed that they reacted with allyl
bromide to give 1,5-hexadiene and silver bromide [Eq. (1)].
Here we describe the gas-phase assembly of the subvalent

silver hydride cluster [Ag4H]+[6] and its subsequent ion–
molecule reactions with allyl bromide.

Agx þ x CH2¼CHCH2Br!
ðAgBrÞx þ x=2 CH2¼CHðCH2Þ2CH¼CH2

ð1Þ

[Ag4H]+ was “synthesized” in the gas phase by collision-
induced dissociation (CID) of a silver–amino acid precursor
in a quadrupole ion trap (QIT) mass spectrometer.[7] The
precursor was the silver ion cluster [(M + Ag-H)3 + Ag]+

(M = N,N-dimethylglycine), which was formed through elec-
trospray ionization (ESI) of a mixture of silver nitrate
(AgNO3) and the amino acid.[8] A total of three stages of
CID (MS4) with consecutive neutral losses of 101 Th
(!C4H7NO2; Th = Thomson) and 103 Th (!C4H9NO2)
yielded [Ag4H]+ in high abundance. Other silver clusters
such as [Agn]+ (n = 3, 5, 7) and [AgnH]+ (n = 2, 6) have been
formed in related CID reactions of [(M + Ag-H)m + Ag]+

clusters (M = glycine or N,N-dimethylglycine). These reac-
tions represent the first gas-phase assembly of silver clusters
mediated by simple biomolecules.[9, 10] Interestingly, the
anionic amino acid ligands act as the reductants; this is in
contrast to the condensed-phase assembly of silver clusters
and nanoparticles on biomolecular templates which requires
the addition of reductants.[11]

The ion–molecule reactions of these silver clusters with
the allyl halides, CH2=CHCH2X (X = Cl, Br, and I) were
examined.[12,13] [Ag4H]+ (m/z = 433)[14] exhibits the highest
selectivity for C!C bond coupling with allyl bromide, CH2=

CHCH2Br (Figure 1). The first molecule of allyl bromide
reacts with [Ag4H]+ by a metathesis reaction to yield [Ag4Br]+

(m/z = 511)[14] as the major ionic product (Figure 1a and
Equation (2)). [Ag4Br]+ subsequently reacts with a second
molecule of allyl bromide to form the ion [Ag4Br2(C3H5)]+

(m/z = 633)[14] (Figure 1b, Equation (3)). Reaction of
[Ag4Br2(C3H5)]+ with a third molecule of allyl bromide results
in the formation of the silver organometallic ion [Ag(C3H5)2]+

(m/z = 189)[14] in combination with the neutral cluster
[Ag3Br3]

[15] (Figure 1 c, Equation (4)). Overall, these equa-
tions combine to give a rare example of a metal-mediated C!
C bond-coupling reaction [Eq. (5)] in the gas phase.[16]

½Ag4H'þ þ CH2¼CHCH2Br! ½Ag4Br'þ þ CH2¼CHCH3 ð2Þ

½Ag4Br'þ þ CH2¼CHCH2Br! ½Ag4Br2ðC3H5Þ'þ ð3Þ

½Ag4Br2ðC3H5Þ'þ þCH2¼CHCH2Br!
½AgðC3H5Þ2'þ þ ½Ag3Br3'

ð4Þ

½Ag4H'þ þ 3 CH2¼CHCH2Br!
½AgðC3H5Þ2'þ þ ½Ag3Br3' þCH2¼CHCH3

ð5Þ

Additional CID studies and DFT (density functional
theory) calculations[17] were carried out to gain further
support that C!C bond coupling had occurred. CID of
[Ag(C3H5)2]

+ results in only the formation of Ag+ [Eq. (6)].
No formation of [Ag(C3H5)]+ through the loss of an allyl
radical is observed. These results suggest that C!C bond
coupling has occurred, however no information about the
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structure of the (C3H5)2 ligand is provided. Although there are
many ligands with a molecular formula of C6H10 that could
fragment by the loss of a ligand [Eq. (6)], previous con-
densed-phase studies suggest that the most likely coupled
product is 1,5-hexadiene.[4, 5] Thus, energy-resolved CID[18]

was used to gain insight into the nature of the coupled
product by comparing the energy-resolved CID spectrum of
the product of [Eq. (5)] to those of authentic ion structures
formed independently by ESI-MS.[19] Figure 2 shows the
energy-resolved CID spectra of six [Ag(C3H5)2]+ systems:
1) the ion of “unknown” structure formed through the
reaction depicted in [Eq. (5)], 2) the [Ag(1,5-hexadiene)]+

ion with an authentic structure, 3) the isomeric [Ag(1,3-
hexadiene)]+ ion, 4) the isomeric [Ag(1,4-hexadiene)]+ ion,
5) the isomeric [Ag(2,4-hexadiene)]+ ion, and 6) the isomeric
[Ag(cyclohexene)]+ ion. It is clear that the energy-resolved
CID spectrum of [Ag(C3H5)2]+ formed by [Eq. (5)] closely
matches that of the authentic [Ag(1,5-hexadiene)]+ ion.
Moreover, the [Ag(L)]+ ions (L = 1,3-hexadiene, 1,4-hexa-
diene, 2,4-hexadiene, cyclohexene) all require less energy to
dissociate, suggesting that these ligands have lower Ag+

binding energies.[19–22] Assuming that the 10% threshold in

Figure 2 is an indicator of the relative binding energies, this
suggests a relative Ag+ binding order 1,3-hexadiene( cyclo-
hexene< 1,4-hexadiene< 2,4-hexadiene< 1,5-hexadiene.
Although we have not quantified the experimental binding
energies, these gas-phase results are consistent with equili-
brium constants of silver–diene complexes determined by GC
which show that the most stable complexes are those in which
the two double bonds are separated by two methylene
units.[23, 24]

½AgðC3H5Þ2'þ ! Agþ þ ðC3H5Þ2 ð6Þ

To gain further insight into these isomeric [Ag(L)]+

complexes (L = 1,3-hexadiene, 1,4-hexadiene, 2,4-hexadiene,
1,5-hexadiene, cyclohexene), we carried out further DFT
calculations.[17,22] Although the ranking of the relative binding
energies of the ligands (1,3-hexadiene (33.6 kcal mol!1)< 2,4-
hexadiene (35.2 kcal mol!1)< 1,4-hexadiene (45.1 kcalmol!1)
< cyclohexene (47.0 kcalmol!1)<1,5-hexadiene (52.1
kcal mol!1)) is different to that of Figure 2, both experiment
and theory suggest that Ag+ binds strongest to 1,5-hexadiene
and that the product of the reactions described in [Eqs. (2)–
(4)] is [Ag(1,5-hexadiene)]+.[21] Further calculations allow us
to evaluate the overall energetics associated with the reac-
tions described in [Eqs. (2)–(4)] by estimating the overall
energy of the reaction in Equation (5) for the case where the
product is [Ag(1,5-hexadiene)]+. The overall reaction
sequence is determined to be exothermic by !166.3 kcal
mol!1 from the DFT data, consistent with the formation of the
[Ag(1,5-hexadiene)]+ product ion through ion–molecule
reactions at the near room temperature conditions of the
QIT.[7b]

Figure 1. Ion–molecule reactions of allyl bromide with the following
mass-selected ions: a) [Ag4H]+ (m/z =433) to produce [Ag4Br]+

(m/z = 511), b) [Ag4Br]+ (m/z =511) to produce [Ag4Br2(C3H5)]
+, and

c) [Ag4Br2(C3H5)]
+ (m/z =633) to produce [Ag(C3H5)2]

+ (m/z= 189).
The presence of H2O and MeOH adducts is marked with asterisks. All
spectra shown were acquired after a reaction time of 30 ms and a con-
stant pressure of approximately 1 ! 10!7 Torr of the neutral reagent
C3H5Br.

Figure 2. Energy-resolved CID spectra of various isomeric [Ag(C6H10)]
+

ions. Plot of reaction extent (! product ions/total ion count) versus
activation voltage (Vp-p) for the elimination of C6H10 ligands from the
complexes [Ag(L)]+ (L =1,3-hexadiene (&), 1,4-hexadiene (~), 2,4-hexa-
diene (! ), 1,5-hexadiene (*), cyclohexane (*), and the [Ag(C3H5)2]

+

ion formed (^; see Figure 1c and Equation (4)). The horizontal line
corresponds to the 10% arbitrary threshold at which the reactivity of
each of the isomeric [Ag(C6H10)]

+ ions can be compared. The error
bars represent the standard deviation of the three independent meas-
urements for each [Ag(C6H10)]

+ ion.

Angewandte
Chemie

729Angew. Chem. Int. Ed. 2005, 44, 728 –731 www.angewandte.org ! 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim



The gas-phase reactivity of the silver [Ag4H]+ cluster
appears to represent a simple molecular model for the C!C
bond coupling of allyl bromide mediated by silver surfaces[4]

and nanoparticles.[5] Remarkably, the hydrogen defect plays a
significant role in initiating the reaction sequence by [Eq. (2)]
as the “pure” [Ag3]

+ and [Ag5]
+ silver clusters do not react

with allyl bromide to promote C!C bond coupling. This
appears to be consistent with the observation that chlorine
surface defects play a role in the selectivity for 1,5-hexadiene
formation on silver surfaces.[4b] Further work is underway to
examine other aspects of metal-mediated C!C bond coupling
reactions in the gas phase.
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