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Forming eŒective worker teams for cellular manufacturing

RONALD G. ASKINy* and YUANSHU HUANGz

Cellular manufacturing has been extensively adopted as a measure to reduce cycle
time, increase productivity, and improve product quality. The past research in
cellular manufacturing has focused on the methodology for identi® cation of
machine groups, part families, and determination of processing routes. The re-
location of existing workers into cells and their training for a team-oriented,
cellular manufacturing environment have largely been ignored. In this research,
a mixed integer, goal programming model is formulated for guiding the worker
assignment and training process to create worker teams with high team synergy
and individual job ® tness meeting cell requirements for technical and adminis-
trative skills. The model integrates psychological, organizational, and technical
factors. Several solution methods including greedy heuristic, ® ltered beam search,
and simulated annealing techniques are developed and tested. It appears that
heuristics such as beam search are capable of obtaining good solutions with
reasonable computational eŒort.

1. Introduction

Manufacturing companies have been actively transforming traditional jobshop

manufacturing systems into manufacturing cells. Empirical evidence indicates reduc-

tions in throughput time, rework, scrap, labour, set-up time, and defects as a result

of implementing cells (Wemmerlov and Hyer 1989). In cellular manufacturing (CM)
a group of heterogeneous machines and a team of workers are dedicated to produ-

cing a family of similar parts. Previous research in CM has focused on the tech-

nological problems of forming appropriate part families and machine groups (see

Burbidge 1975, King and Nakornchai 1982, Kusiak 1987, Askin and Vakharia 1990,

Suresh 1991, 1992, and Singh 1993 for general reviews).
Burbidge (1975) listed a set of dedicated workers as a key principle of cell auton-

omy (or independence) which in turn is an essential aspect of successful cells in

practice. In a survey of industry, Askin and Estrada (1999) found that training of

workers was one of the top concerns when implementing cells. The conversion from
traditional jobshop production to CM brings a new culture context to the worker

team. In creating cells, workers with process oriented skills must be divided into part

oriented teams and assigned to cells with heterogeneous processes. Worker training

becomes an integral part of cellular team formation and success. In creating empow-

ered teams, additional technical, teamwork, and administrative skills must be devel-

oped among the workforce. Workers may be cross-trained on several processes and

asked to set-up their own machines and perform quality assurance checks. Together,
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workers must cooperate to identify and solve problems, schedule maintenance and

production activities, order materials, and research potential process improvements.
Cell productivity depends not only on the technical and administrative skills the

workers possess but also the eŒective interaction among team members. Despite

these critical human resource issues, the formation of worker teams in CM has

received only scant attention from researchers.
In this research, the problem of forming an eŒective worker team for CM is

studied. In the next section, we review past literature on the worker assignment

problem and the approaches to predict and improve the eŒectiveness of team

member interaction. We then formulate a goal programming model for forming

an eŒective worker team in Section 3. Solution methods are developed in Section

4 for ® nding an optimal or near-optimal solution for the model. In Section 5, we test

and evaluate these solution methods. Section 6 summarizes our work and discusses
future directions.

2. Literature review and problem de® nition

Ebeling and Lee (1994) analysed the cost and bene® t of employee cross-training

on a mixed-model assembly line and formulated a mixed integer programming model

to guide cross-training assignments for a speci® c number of assembly jobs and

workers. Suer (1996) developed mixed integer and integer programming models to

achieve optimal product and worker assignment to labor-intensive manufacturing
cells. Min and Shin (1993) developed a multi-objective model to form cells with

consideration of both machines and workers but training was not considered in

their model. Warner et al. (1997) discussed relevant factors in assigning workers

to cellular teams from both technological and human interaction perspectives.

Askin and Huang (1997) formulated an integer programming model for an aggregate
worker assignment and training problem for use in converting a functionally organ-

ized manufacturing environment into a CM arrangement. Each of these papers

addresses speci® c issues related to our cell team development model. However, we

believe this paper is the ® rst to propose and solve a comprehensive quantitative

model that incorporates worker skills, technical requirements and team dynamics.
Worker groups are typically formed in an ad hoc manner when CM is imple-

mented. Despite the growing trend to knowledge based job design and the increasing

role of the line worker in ¯ exible manufacturing, workers have been treated as an

afterthought , with emphasis being placed on technological equipment. Stevens and

Campion (1994) studied the knowledge, skill, and ability (KSA) requirements for

teamwork. The KSAs were classi® ed as interpersonal type and self-management type
and fourteen speci® c KSAs were summarized for teamwork in their research. These

KSAs were summarized for teamwork in their research. These KSAs can assist

human resource management in personnel selection and sta� ng, performance

appraisal, career development, compensation, and job analysis. Barrick and

Mount (1991) analysed ® ve major personality dimensions and job performance
and concluded that certain personality traits could be valid job performance pre-

dictors for some occupations and some criterion types. For example, extroversion

was a valid predictor for managers and sales positions involving social interactions.

Kembel (1996) characterizes personality types along the dimensions Rational,

Organized, Loving, and Energized (ROLE). An individual’s dominant dimension(s)
can be roughly identi® ed by a quiz. Each type of personality has its characteristic

motivations and goals, learning process, and modes of communication, leadership
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and management. The ROLE characterization is used to help workers understand

fellow team members.
McCaulley (1990) examined the history, characteristics, and use of the Myers±

Briggs Type Indicator (MBTI). The MBTI classi® es individuals with bi-polar pre-

ferences for four dimensions generating 16 types. Lyman and Richter (1995) used

MBTI in forming a quality function deployment team. Team members who were
tested by MBTI had a better understanding of each other and this helped the team

members to work together more eŒectively to accomplish team goals. The least

Preferred Co-Worker (LPC) measure is also a tool to evaluate the social distance

between group members. Individuals with high LPCs are hypothesized to perceive

less social distance between themselves and their least preferred co-worker (HoŒman

1984). Schriesheim et al. (1994) used lPC scores to further characterize leadership

performance predictions.
Kolbe (1993) notes that other psychological pro® les concentrate on personality.

The Kolbe Conative Index (KCI) was developed to measure the conative or instinc-

tive behaviour traits of individuals. The KCI measures an individual’ s basic instincts

towards the action modes of Probe (Fact Finder), Pattern (Follow Through),

Innovate (Quick Start), and Demonstrate (Hands-on Implementor). Values indicate
tendencies on a scale from resistance to initiation of actions within each mode. In

each dimension, values between 0 and 3 indicate a nature towards resistance to that

action, and, values between 7 and 10 indicate a tendency towards initiating actions of

that form. A score between 3 and 7 indicates accommodation or a r̀esponder’ at that

trait. Most people have a mix of the four traits and are ìnsistent’ in some traits and
r̀esistant’ in others. Additional measures evaluate the match between an individual

and a speci® c job. The combinations of individual types that produce the most

eŒective teams have been identi® ed. The ideal synergistic team mix consists of indi-

viduals that aggregate to a 25% , 50% , 25% mix of Initiator, Responder, and

Preventor/Resistor across the four action modes.

Many qualitative studies exist detailing the roles of team members and comment-
ing on how to form a high performance self-directed team. These studies share the

shortcomings of not being directly related to cellular manufacturing nor do they

provide a clear basis for mathematical modelling. Measures such as MBTI and the

Kolbe Index provide a quanti® cation that one can attempt to use for formally

de® ning techniques for cell formation. In this paper, we use KCI measures to
de® ne the conative tendencies of workers and their ® t for speci® c jobs and synergy

in speci® c groups.

3. Worker assignment and training model

Our intent is to develop a model for guiding the formation of a worker team for

each cell. We assume that part families have already been created based on geo-

metric, usage, and/or processing similarities. Machines have been allocated for the

production of each family. Given the technical requirements for each cell and the
capabilities and conative measures of the existing labour pool, we intend to select the

team of workers for each cell, the training schedule for each worker, and the assign-

ment of tasks to workers within each cell. Technical requirements are derived from

process plans and organizational procedures. We denote these as s̀kills’ . Skills

include traditional technical duties such as machine set-up and operation, but also
the administrative responsibilities assigned to empowered work teams such as sched-

uling, and purchasing. Capabilities can be deduced from work history and worker
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labour grades. KCI measures provide the data required for measuring individual

aptitude and team synergy. We de® ne the model as follows.

Decision variables

Yik ˆ
1 if worker i is assigned to cell k;

0 otherwise;

»

Zik ˆ
1 if worker i acquires skill j;

0 otherwise;

»

Xijk is the proportion of time worker i does skill j in cell k.

Deviational variables
dtrain is the amount by which the total training cost exceeds 0;

d‡
mk is the amount by which the team assigned to cell k exceeds the goal m;

dmk is the amount by which the team assigned to cell k is under the goal m;

dfit is the amount by which the total ® tness exceeds 0.

Data coeYcients

aitm

1 if worker i ’s mode of operation is at level m for trait t;

0 otherwise;

»

cij is the cost to train worker i fully in skill j;

fij is the ® tness score of worker i to skill j; 0 µ fij µ 1; the closer fij is to 0, the

® tter the worker i is for skill j;

Sk is the number of workers to be assigned to cell k;

Sjk is the amount of skill j needed in cell k;

wfit is the Cardinal weight assigned to dfit;

w‡
mk is the Cardinal weight assigned to d‡

mk;

wmk is the Cardinal weight assigned to dmk;

wtrain is the Cardinal weight assigned to dtrain;

The Worker Assignment and Training Model (WAT) becomes:

Minimize Z ˆ wtraindtrain ‡ wfitdfit ‡
X

k

X3

mˆ1

…w‡
mkd‡

mk ‡ wmkdmk† …1†

Subject to:
X

i

X

j

cijZij dtrain ˆ 0 …2†

X

k

X

i

X

j

fijXijk dfit ˆ 0 …3†

X

i

X4

tˆ1

aitmYik ‡ d‡
mk dmk ˆ Sk; m ˆ 1; 3; for all k …4†
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X

l

X4

tˆ1

aitmYik ‡ d‡
mk dmk ˆ 2:0Sk; m ˆ 2; for all k …5†

X

k

Yik ˆ 1; for all i: …6†

X

i

Yik ˆ Sk; for all k …7†

X

i

Xijk ¶ Sjk; for all j and k …8†

X

j

Xijk µ Yik; for all i and k …9†

X

k

Xijk µ Zij ; for all i and j …10†

Yik 0 or 1; Zij 0 or 1; 0 µ Xijk µ 1; 0 µ d‡
mk; 0 µ dmk …11†

The objective function (1) presents a weighted average of the three objectives Ð

minimizing training cost, minimizing mis® t between worker conative traits and job
requirements, and minimizing deviations from desired team synergy. Team synergy

is measured across the three instinctive modes (m) of initiation, accommodation, and

resistance. Equations (2)± (5) are goal constraints and equations (6)± (11) are feasi-

bility constraints. Equation (2) is for minimizing the total training cost. We allow

training costs to depend on the worker and skill. Factors such as experience, educa-
tional background, motivation, base expertise, and natural aptitude can be include in

the model. Equation (3) is included to minimize the total task ® tness score.

Equations (4) and (5) are to minimize the deviation from the ideal team synergy

level. A balance of 25% resistor, 25% initiator, and 50% accommodator across the
four action modes is required to ensure that ideas are generated, adequately de® ned

and analysed, and successfully implemented if and only if they are found to be

justi® able. Equations (6) and (7) ensure that each worker is assigned to a single

cell and each cell receives the necessary number of workers. Equation (8) ensures

that the time spent by the set of workers assigned to perform each skill j in each cell k

is at least as large as the requirements for that cell. Equation (9) prevents the model

from assigning tasks to any worker unless they have been assigned to that cell. If we
choose to assign tasks in cell k to worker i, then we must set Yik to 1. Otherwise the

expression forces the time allocated by that worker to any task in the cell to be 0.

Equation (9) also limits the amount of work that can be assigned to any individual.

Workers cannot be assigned more than full time duties. We must also ensure that

workers are only assigned tasks for which they are trained. This is ensured by
equation (10). Finally, equation (11) enforces the binary and non-negative restric-

tions on the variables.

Management can set the weights for the goals. One choice may be that all the

weights are set equal to one if management does not diŒerentiate the priority on
goals of training cost, individual ® tness to their tasks, and team synergy level.

Sensitivity and other standard multiobjective decision making explorations can be

performed on the weights. Note also that additional constraints , such as limits on
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the maximum training allowed for any worker , can be easily added to the model if

desired.

4. Solution methods for worker assignment and training model

Even simpli® ed versions of the WAT model that do not involve the Xijk task
assignment variables can be shown to be NP-hard by reduction of the set covering

problem (see Huang 1999). As such, we investigate several specialized heuristics for

the problem. We investigate a simple greedy heuristic and several versions of beam

search. Simulated annealing is also considered for comparison. These methods pro-

vide a range of computational complexity and ability to specialize to the WAT

model.

4.1. Greedy heuristic

We ® rst propose a computationally e� cient, single-pass greedy heuristic that

iteratively assigns workers to cells. The technique is greedy in the sense that each
assignment is made to optimize myopically the objective de® ne in equation (1). After

each assignment, the remaining un® lled requirements for the cell are updated. At

each iteration, all available workers are permuted against the available cells and the

matches are evaluated. The best match is determined after the total impact on the

three goals of training cost, ® t, and synergy is evaluated. The detailed task assign-
ment and time allocation to each task for the worker in a possible match is deter-

mined by a subroutine within the iterations of the greedy heuristic.

The procedure to select the best match at iteration l is expressed as follows. To

conform with our subsequent description of the beam search procedures, we will

refer to iterations as levels. The assignment process from the top level to level l 1
gives a partial solution to the problem of WAT. Let ³l 1 be the set of workers

assigned in levels 1 to l 1. At level l, each possible match of a worker w =2 ³l 1

with a cell c represents a possible partial solution extended to level l. We term the

impact on the three goals from this match as Zl;w;c, where

Zl;w;c ˆ wtraind l;w;c
train ‡ wfitd

l;w;c
fit ‡

X

k

X3

mˆ1

…w‡
mkd l;w;c

mk‡ ‡ wmkd l;w;c
mk

†: …12†

Consider the impact on team synergy ® rst. We look at a match of worker w to cell
c in level l after we have completed l 1 levels of assignment. Yiks representing the

assignments of the worker i to cell k from top level to level l in the partial solution

are known. If the number of workers assigned to cell k; k ˆ 1; . . . ; K , is Mk, we can

calculate d l;w;c
mk‡ and d l;w;c

mk
by solving the following equation set (equations (13) and

(14)).

X

i2f³l 1;wg

X4

tˆ1

aitmYik ‡ d l;w;c
mk‡ d l;w;c

mk
ˆ Mk; m ˆ 1; 3; 8k …13†

X

i2f³l 1 ;wg

X4

tˆ1

aitmYik ‡ d l;w;c
mk‡ d l;w;c

mk
ˆ 2Mk; m ˆ 2; 8k: …14†

The value of the term
P

k

P3
mˆ1…wmk‡ d l;w;c

mk‡ ‡ wmk d l;w;c
mk

† in (12), can be deter-

mined given d l;w;c
mk‡ and d l;w;c

mk
.
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Consider the impact on the goals of training cost and individual job ® tness. The

impact of the partial solution at level l with assignment of worker w to cell c on these
two goals can be evaluated by calculating Z l;w;c

2 , where

Zl;w;c
2 ˆ wtraind l;w;c

train ‡ wfitd
1;w;c
fit

ˆ wtrain…d l 1
train ‡ ¯d l;w;c

train† ‡ wfit…d l 1
fit ‡ ¯d l;w;c

fit †
ˆ wtraind l 1

train ‡ wfitd
l 1
fit ‡ wtrain¯d l;w;c

train ‡ wfit¯d l;w;c
fit ;

¯d l;w;c
train is the training cost incurred for the assignment of worker w to cell c at

level l, and

¯d l;w;c
fit is the individual job ® tness score when worker w is assigned to cell c at

level l.

Since we do not know the exact task assignment and time allocation to each
assigned task for worker w in cell c at level l, the value of ¯d l;w;c

train and ¯d l;w;c
fit cannot be

easily determined. A suitable task assignment and time allocation for worker w in

cell c can reduce the impact of the assignment on the goals of training cost and

individual job ® tness. The determination of task assignment and time allocation for

worker w at level l can be modelled as an integer programming model, termed M, if
we look at the assignment of worker w to cell c at level l locally. The model M is as

follows.

Minimize Z ˆ wtrain¯d l;w;c
train ‡ wfit¯d l;w;c

fit …15†

Subject to:

i ˆ w …16†

k ˆ c …17†
X

i

X

j

cijZij ¯d l;w;c
train ˆ 0 …18†

X

k

X

i

X

j

fijXijk ¯d l;w;c
fit ˆ 0 …19†

X

i

Xijk µ S 0
jk; for all j …20†

X

j

Xijk ˆ 1 …21†

X

k

Xijk µ Zij; for all j …22†

Yik 0 or 1; Zij 0 or 1; 0 µ Xijk µ 1; 0 µ dcos t; 0 µ dmk‡ ; 0 µ dmk : …23†

Model M is intentionally written in a format similar to model WAT to save

length of explanation, but the cell index k is con® ned to c and worker index i is

con® ned to w. The meaning of each variable and data coe� cient stays the same as
those in model WAT, except S 0

jk is the amount of skill k still needed in cell k after the

assignments of l 1 levels while Sjk in model WAT is the amount of skill j needed in

cell k. The time allocated to skill j should be less than or equal to the unful® lled skill
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requirements, as is explained in equation (20). Equation (21) makes sure that the

worker’s time is fully utilized in the cell. We assume that every worker’s time has to
be fully allocated to problem WAT.

The local optimal task assignment for worker w in cell c can be determined by

solving model M. However, we develop a greedy heuristic with polynomial time

behaviour to assign tasks to worker w. The heuristic is computationally faster
than using branch-and-bound to solve the model optimally.

We repeat the following step to assign task(s) to the worker w. We assign one task

and determine the time the worker should spend on it at each step until the worker’s

time is consumed. The time required for the tasks is S 0
j ; j ˆ 1; . . . ; J . At each step, we

calculate a selection factor Rj for each task j with S 0
j > 0. We only need to consider

the skill in the cell that still requires a worker.

Rj ˆ …wtraincwj ‡ wfit fijQj†=Qj; for j with S 0
j > 0

Qj ˆ min…S 0
j ; X†;

where X represents the available time remaining for worker w. The time the worker w
can perform skill j will not exceed Qj, the minimum of the available time remaining

for worker w, X, and the time required for skill j, S 0
j . With Wj as the denominator, Rj

is the average cost per time unit if we assign worker w to task j. If

k ˆ arg minfRj : 1 µ j µ J and S 0
j > 0g, we assign worker w to skill k with time

Qk and update the available time of this worker …X ˆ X Qk) and time require-
ments for each skill in this cell …S 0

k ˆ S 0
k Qk†. We repeat the above step until the

worker’s time limit or the time requirement of the cell is reached and obtain the

heuristic solution. The feasibility of the task assignment heuristic solution is also

guaranteed in this way. With the above greedy heuristic, we can obtain a solution for

the local optimal task assignment problem and know the objective function value Z
of this greedy solution.

Therefore, the value of Zl;w;c, the total impact on the three goals by assigning

worker w to cell c at level l, is determined after we plug the greedy heuristic’ s solution

for the local optimal assignment problem only at level l in the expression.

Zl;w;c ˆ wtraind l;w;c
train ‡ wfitd

l;w;c
fit ‡

X

k

X3

mˆ1

…wmk‡ d l;w;c
mk‡ ‡ wmk d l;w;c

mk
†

ˆ wtraind l 1
train ‡ wfitd

l 1
fit ‡ wtrain¯d l;w;c

train ‡ wfit¯d l;w;c
fit

‡
X

k

X3

mˆ1

…wmk‡ d l;w;c
mk‡ ‡ wmk d l;w;c

mk
†;

The best match at level l is the match with the least value of Zl;w;c. The worker in

the best match is assigned to the cell in the best match at level l. Along with the

match of a worker to a cell, the task assignment and time allocation for the tasks are
also determined for this worker. After the assignment at one level is done, the

assigned worker is taken out of the available worker list and the remaining skill

and labour requirements for the cell are updated. The cell is taken out of the avail-

able cell list if its labour requirements are met. After all the workers are assigned, the

formation of each cellular manufacturing team is ® xed.
We call this greedy heuristic the hierarchical worker-cell greedy heuristic. It can

be described in the following procedure.
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Hierarchical worker-cell greedy heuristic for model WAT

Step 0. Initialize the available worker list U ˆ f1; 2; . . . ; I† and the available cell list
C ˆ f1; 2; . . . ; K ); Set level number l ˆ 1;

Step 1. For all c, c 2 C and w, w 2 U, calculate value of Zl;w;c in the ascending order

of w and then c with the task assignment heuristic.

Step 2. Let …w*; c*† ˆ arg minfZl;w;c : w 2 U; c 2 Cg. Assign worker w* to cell c*. If
there is a tie, the ® rst match of w* and c* is selected;

Step 3. Sjc¤ ˆ Sjc¤ aw¤j, for all j and Sjc¤ ¶ 1; aw¤j ˆ time spent on task j by worker

w*

Step 4. U ˆ U fw*g;

Step 5. Sc¤ ˆ Sc¤ 1;

Step 6. If Sc¤ ˆ 0:
C ˆ C fc*g;

Step 7. If U ˆ ¿,

Stop;

Else

l ˆ l ‡ 1; Go back to step 1.

4.2. Greedy-heuristic based beam search

Because the greedy heuristic is myopic, a more sophisticated beam-search based

heuristic is also developed for model WAT. The beam search employs the upper
bound on the optimal solution obtained by using the hierarchical worker-cell greedy

heuristic at a node as the evaluation function value. Initially we also tried using the

LP relaxation as a lower bound for comparing nodes. The LP solutions were slower

computationally and failed to provide signi® cant improvement. As the beam search

is heuristic, we choose to use the quicker upper bound to prioritize nodes. However,
we may lose the ability to prove optimality in those cases in which an optimal

solution is obtained.

Similar to the greedy heuristic, the beam search heuristic proceeds from level to

level. It performs a breadth- ® rst search with no backtracking. Each node in the

search tree contains a combination of a worker and a cell, which means the
worker is assigned to the cell. The information of task assignment and time alloca-

tion of tasks for this worker in the cell is also included in the node. The node also

knows the node at the next higher level from which it emanated so that we can trace

back to the top level. A path from a node at the top level to any node in the tree

represents a series of selection and assignment processes, i.e. a partial or complete

solution for problem WAT.
Assume beam width w. Only the w best nodes at every level are expanded or

sprouted into further nodes at the next level. The beam search method implemented

for problem WAT employs a ® lter as well as the restricted beam. All expanded nodes

representing the possible assignments are ® rst evaluated with a ® lter function, which

calculates the value of Zl;w;c, the local impact on the three goals at this level only.
Only the ® lter width f child nodes with the best results are kept for a father node. For

a partial solution represented by any of the child nodes not ® ltered out, the hier-

archical worker-cell greedy heuristic developed in last section is used to complete the

solution. In this way, a global estimate at a node on the impact of three goals is

obtained. This is also the evaluation function value at this node and is used to judge
the promise of the node. Only w nodes are ® nally kept for this level and are sprouted

into the next level. The ® lter does not consume much computational time but enables
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us to ® lter out the nodes with poor performance before we have to compute a global

estimate for each node likely worth keeping.
Given the greedy-heuristic based beam search described above, the following

proposition can be concluded in this section.

Proposition 1: For problem WAT, let the objective function value of the solution

by a greedy-heuristic based beam search be Zb and the objective function value of the

solution by greedy heuristic be Zg. We have Zb µ Zg.

Proof: At the very ® rst level of the hierarchical worker-cell greedy-heuristic based

beam search, all possible matches (nodes) of worker and cell are enumerated and the

® lter function is applied to each one of these matches. The node A with the lowest

local impact or ® lter function value is guaranteed to pass through the ® lter. This

holds for every successive stage as well. The evaluation function value at node A is
actually the objective function value Zg of the solution by the greedy heuristic if node

A is at the top level. If node A is not a node at the top level, the evaluation function

value at it is the same with that at its retained parent node. Since the best w nodes are

kept at each level, the lowest evaluation function value at a level is always less than

or equal to that at the level right above. Therefore, we have Zb µ Zg. This completes
the proof.

We write the procedure of the greedy-heuristic based beam search algorithm as

follows.

Greedy-heuristic based beam search algorithm for model WAT
Step 1. Set beam width ˆ w, ® lter width ˆ f, level l ˆ 1, Available worker set

U ˆ f1; 2; . . . ; Ig, available cell set C ˆ f1; 2; . . . ; Kg, Let Rl ˆ the retained

node set at level l and R0 contains only one null node.

Step 2. Form the initial node set S for level l; S ˆ f…n; w; c†jn 2 Rl 1; w 2 Un,

c 2 Cng. Un ˆ available worker set from node n. Cn ˆ available cell set
from node n.

Step 3. Trace back from each node in S to a retained node at the top level and

obtain a partial solution P.

Step 4. Compute the objective function value Zp for the partial solution with the

task assignment greedy heuristic for each n 2 S.
Step 5. For each retained node n 2 Rl 1, keep the f child nodes with lowest Zp.

Step 5. For the f kept child nodes from each retained node n at level l 1, obtain

the evaluation function value Ze at these nodes with the hierarchical worker-

cell greedy heuristic. Keep the best w nodes with the lowest Ze as the

retained nodes for level l.

Step 8. If l ˆ I ,
Go to step 9;

Else

l ˆ l ‡ 1; go back to step 2.

Step 9. Start from the retained nodes at the bottom level, trace back to level 1 and

get the best w solutions.

5. Experiment results and comparison of the heuristics
We use a full factorial model with crossed factors to test the performance of the

heuristics developed for model WAT. The number of workers per cell, number of
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cells, number of skills required at each cell, and initial skill level of the workforce are

factors in our experiments. In addition, the individual job ® tness coe� cient, fij, is

assumed to be uniformly distributed between 0 and 1. For each trait, an individual’s

mode of operation, (MO) as represented in the aitm coe� cients, is generated with a

probability of 20% for Initiating, 20% for Preventing, and 60% for Responding.

This distribution stems from large sample population results tabulated by the Kolbe

Corporation (Kolve 1993).

Ten replications are generated for each test con® guration. Using CPLEX opti-

mization software running on a Sun Sparc workstation, each problem instance was

solved with an upper time limit set to 3600 seconds. Solutions were also found for the

greedy heuristic, and four versions of ® ltered beam search. The average over the ten

replications of objective value deviation against lower bound and solution time are

used to evaluate the performance of each algorithm. The test results for each prob-

lem size or test con® guration are ordered in the tables by the ascending problem size.

The number of workers to be assigned is the ® rst ranking factor followed by the

number of cells, number of skills, and skill probability level in that order.

Table 1 shows the solution quality of CPLEX and our heuristics. Values are

average percentage deviations above the optimal or lower bound. We use the

lower bound obtained by CPLEX using branch and bound with the 3600 second

time limit. Figure 1 illustrates these results. Table 2 and Figure 2 display average

solution times.

First, we discuss the experiment results separately for the three groups of solution

methods: (1) CPLEX optimization software, (2) greedy heuristic, and (3) ® ltered

beam search. Then the heuristics are compared and suggestions on how to use

these solution methods are provided.

5.1. Experience on solving model WAT by CPLEX

From ® gure 1, we can see that CPLEX solved the model to optimality for

relatively small problem sizes in test con® gurations 1 to 11. Evel for larger problem

sizes with 8 workers per cell, 8 cells, 8 skills required by each cell, and all skill

probability levels (test con® guration 19, 20 and 21), the optimal solution was

obtained by CPLEX for all test samples. Test con® gurations 19, 20 and 21 possess

a special structure. The number of workers and skills per cell were equal. It can be

shown in this case that the workload assignment subproblem simpli® es to a unim-

odular assignment problem in this case. With 64 workers and 8 workers per cell,

CPLEX could quickly identify an optimal solution having perfect job ® t and team

synergy without any required training. Smaller problems with 2 workers and skills

per cell were more di� cult to solve since the total acquired skill pool was smaller and

it was more di� cult to achieve team synergy. CPLEX could not solve problems with

8 cells and more skills than workers to optimality within the set time limit. In these

problems workers must split their time between tasks. The gap between the feasible

solution found by CPLEX and the lower bound identi® ed ranged from 25% to 88%

in deviation from the lower bound.

In general, we can say that CPLEX performs well for small problem sizes or even

big problem sizes with special coe� cient values. But it fails to ® nd the optimal

solution or a solution close to optimality within a reasonable time for general

large problems.
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5.2. Experience on solving model WAT by the greedy heuristic

The greedy heuristic could ® nd a feasible solution for the model in a fairly short

computation time, as shown in table 2. The computational time was less than 4

seconds for all problems tested.
Table 1 shows that the greedy heuristic frequently performed poorly in identify-

ing the optimal solution relative to the other methods. Optimal solutions were only

found for some problems with 4 workers to be assigned into 2 cells. For relatively

small problem sizes from test con® gurations 1 to 11, the solution found by the greedy

heuristic deviated from the optimal solution obtained by CPLEX by 6.56% to
51.55% on average. For the problems with number of skills equal to number of

cell workers, deviations from optimality never exceeded 15% . With multiple tasks

per worker, deviations reached as large as 88% for CPLEX. Interestingly, for many

of the di� cult problems, such as cases 17, 18 and 24, the greedy heuristic found

better solutions than CPLEX despite one hour of computational time for CPLEX
and less than 4 seconds for the greedy heuristic.

5.3. Experience on solving model WAT by ® ltered beam search

The ® ltered beam search algorithms signi® cantly outperform the greedy heuristic

on the same test samples. When beam width and ® lter width both are at their high

level (® lter width ˆ 8 and beam width ˆ twice the number of workers per cell), we see

that the largest deviation by the beam search algorithm from the optimal solution
was 2.41% for the test con® gurations 1 to 9. The longest average solution time was

18 seconds. For larger problem sizes of 8 workers per cell, 2 cells, 2 skills required in

each cell, and 8 workers per cell, 8 cells, 8 skills required in each cell, the test results

from the beam search algorithm were still less than 5% away from the lower bound

identi® ed by CPLEX. However, solution times matched CPLEX for test con® gura-
tion 21 with 8 workers per cell, 8 cells, and 8 skills required in each cell. For the

hardest problems with 8 cells and twice as many skills as workers/cell, the ® ltered

2443EVective worker teams for cellular manufacturing

Figure 1. Performance of algorithms by deviation to the lower bound.
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beam search at the high width values outperformed CPLEX in almost all cases. Over

the entire experiment, the ® ltered beam search yielded values averaging 14.1% above

the lower bound as compared with 14.5% for CPLEX. For problems with 64 work-
ers and 16 skills in each cell, the deviations from the lower bound CPLEX achieved

were 34.05% , 52.60% and 64.50% as compared with 27.80% , 41.79% and 46.80%

for the ® ltered beam search at the three skill probability levels. CPLEX was stopped

at the time limit of 3600 seconds for these test con® gurations. Further tests on a

couple of test samples showed that the CPLEX would run out of computer memory
when computational time got to about 7000 seconds and there was little gain in the

lower bound and solution quality. The average solution time to complete the beam

search with beam and ® lter width at level 2 was 8860.6 seconds to 8883.5 seconds.

When we relaxed the beam width and ® lter width both to level 1, the solution time

beam search algorithm required was about 1200 seconds. The deviations by beam
search with low beam and ® lter widths were 30.32% , 45.35% and 49.54% .

Solution times increased almost linearly for versions of ® ltered beam search as

the ® lter and beam widths were widened. Solution quality increased modestly. The

overall average deviation was 18.0% , 14.6% , 16.2% and 14.1% for the four beam

and ® lter width combinations tested. Corresponding average solution times were

222, 979, 442 and 1597 seconds. By examining the detailed solution output ® le, we
found that the higher level of beam width obtained a better upper bound on the

objective value than the lower beam width at the ® rst few levels of beam search.

Further exploration provided only minimal improvement. This suggests that a vary-

ing width may be advisable.

5.4. Additional testing with simulated annealing

Even though the beam search achieved a smaller deviation from the lower bound
than CPLEX over the large instances in the test con® gurations 22, 23 and 24, the

deviation by beam search was still signi® cant. The high deviation may be due to the

2445EVective worker teams for cellular manufacturing

Figure 2. Solution time of each algorithm.



poor quality of the lower bound obtained by CPLEX within the time limit and

computer memory. To investigate this issue, we attempted to solve several harder

problems by simulated annealing using an inhomogeneous cooling schedule, which

reduces temperature after each iteration. Simulated annealing has proven to work

well on many combinatorial optimization problems and can be con® gured to guar-

antee convergence to the optimal solution (Kirkpatrick et al. 1983, Cheh et al. 1991).
The notation we use for applying the simulated annealing is as follows.

K number of cells;

I number of workers per cell;

J number of skills required in each cell;

Tn temperature at each move. n ˆ 0; 1; 2; . . . ; N;

s0 initial solution obtained by the greedy heuristic. It can be de® ned by a

K £ I matrix Y and I £ J matrices Xk; k ˆ 1; 2; . . . ; K . Yki represents the

binary identi® er indicating if worker i is assigned to cell k and Xij in Xk

represents the amount of time worker number i performs skill j in cell k;

s Current solution;

s 0 new neighbour solution randomly generated from s;

s* current best solution;

f …s† objective function of s.

To generate a new neighbour solution from the current solution, we ® rst ran-

domly choose two cells k1 and k2. Then we generate two random numbers w1 and

w2 in the range of 1 and number of workers per cell I, and switch worker w1 in cell k1

and worker w2 in cell k2. However, the values of Xijs in the new Xk1 and Xk2 still
need to be determined after we switch the two workers. Since we already know the

workers assigned to cell k1 or k2, the determination of task assignment and time
allocation can be formulated as an integer programming model, termed Q, as follows.

Decision variables

Zij ˆ
1 if worker i acquires skill j;

0 otherwise:

»

Xij 5 proportion of time worker i performs skill j.

Data coeYcients

cij is the cost to fully train worker i in skill j.

fij is the ® tness score of worker i to skill j; 0 µ fij µ 1; the closer fij is to 0, the

® tter the worker i is for skill j.

Sj amount of skill j needed.

The model then becomes

Q : Minimize Z ˆ
X

i

X

j

cijZij ‡
X

i

X

j

fijXij …24†

Subject to

X

i

Xij ¶ Sj; for all j …25†
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X

j

Xij µ 1; for all i …26†

Xij µ Zij; for all i and j …27†

Zij 0 or 1; 0 µ Xij µ 1: …28†

The objective function (24) computes the cost of training and the total amount of

individual ® tness. since the Kolbe team synergy levels are deterministic given that the

workers assigned to the cell are known, the team synergy objective is ignored.

Equation (25) ensures that the time spent by the set of workers assigned to perform
each skill j is at least as large as the requirements for the cell. Equation (26) limits the

amount of work that can be assigned to any individual. Workers cannot be assigned

with more than full time duties. Equation (27) ensures that workers are only assigned

tasks for which they are trained. Equation (28) enforces the binary and non-negative

restrictions on the variables.
We then develop a greedy heuristic for model Q. It is very similar to the hier-

archical worker-cell greedy heuristic in section 4.1 for model WAT. The greedy

heuristic starts from the ® rst level and ends at the level of number of workers I. It

determines the time allocation for one worker at each level of assignment. At each
level, the heuristic calculates the total of training cost and individual ® tness, Zl;w for

each worker available and allocates the time for the worker with the least amount of

training and individual ® tness cost. For calculating the value of Zl;w for a worker, we

also apply the concept of average cost per time unit, Rj used in the greedy heuristic

for model WAT. Against a worker, we keep assigning his or her time to the task with

the lowest average cost per time unit until the individual’s time is used up. Now that

the values of Xijs in the new Xk1 and Xk2 are determined, the training cost, total of
individual ® tness can be simply computed for cells k1 and k2. We keep the time

allocation and task assignment in the cells other than k1 and k2 the same so that the

objective function values for these cells stay the same. The value of function f …s 0† is

the summation of the objective function value for all the cells.

After the generation and evaluation of a near neighbour solution as discussed
above, our simulated annealing algorithm is described in the following procedure.

Simulated annealing procedure model WAT

Step 0. Obtain the initial solution S0 for a problem WAT instance with the greedy
heuristic. Set s ˆ s* ˆ s0; n ˆ 0.

Step 1. Generate a new neighbour solution s 0 from current solution s.

Step 2. If f …s 0† 4 f …s†, accept s 0 and replace s with s 0; if f …s 0† < f …s*†, replace the

current best solution with s 0.
Step 3. If f …s 0† > f …s†, accept s 0 and replace s with s 0 with probability

EXP(( f …s† f …s 0††=Tn†.
Step 4. Tn‡1 ˆ ¬Tn.
Step 5. If n ˆ N ;

Stop.

Else

Go back to Step 1.

We applied this simulated annealing algorithm to obtain the solution for the 10

instances at the test con® guration 23 with 8 cells, 8 workers per cell, 16 skills required
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per cell, and skill probability 0.5 in the experiments of section 5. the initial accep-

tance rate was set to around 60% and stopping temperature was set to have the

acceptance rate less than 1% . The solution time is set to about one hour, which was

in the range of the solution times by the beam search algorithm.

Table 3 shows the deviation from the lower bound achieved by the simulated
annealing and the performance of the ® ltered beam search. The average solution

time for the ten replications by simulated annealing was 2832 seconds on the same

Sun workstation. We can see that the simulated annealing performed better than the

greedy heuristic and was similar overall to the ® ltered beam search. Figure 3 further

shows how fast the beam search and simulated annealing solutions improved during
the search for a typical replication. We can see that the ® ltered beam search achieved

a lower objective function value faster and thus may be a better choice when com-

putational time is limited.

6. Conclusions
We formulated a detailed worker assignment and training (WAT) model for

formation of worker teams in cellular manufacturing. The procedures allow an

existing functional organization to be converted to cells so as nearly to maximize

team synergy and the ® t between worker abilities/instincts and task requirements

while minimizing training cost. The model supports the design of manufacturing cells

to meet the operational requirements created by external demand, while establishing

a cohesive and cooperative working environment, and individual job satisfaction.
The model output locates workers into cells and details the task assignments for each

worker.

Owing to the computational complexity of model WAT, solving the model opti-

mally is not feasible for large problems. We developed a greedy heuristic and greedy-
heuristic based ® ltered beam search algorithm. The algorithms were tested over a

range of parameter combinations. Additional tests with simulated annealing were

performed for certain di� cult cases. The results indicate that the ® ltered beam search
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may be an eŒective solution approach, preferable to straightforward optimization or

possibly simulated annealing when computational time and memory are limited.
This research provides a usable methodology for manufacturing managers to

allocate workers and tasks into cells and for human resource managers to improve

their return on training investment. Future research plans include determining addi-

tional factors beyond synergy that can reliably predict team performance and inclu-
sion of these in the model.
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