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Visualization and Performance Metric in
Many-Objective Optimization

Zhenan He and Gary G. Yen, Fellow, IEEE

Abstract—Visualization of population in a high-dimensional
objective space throughout the evolution process presents an
attractive feature that could be well exploited in designing
many-objective evolutionary algorithms (MaOEAs). In this paper,
a new visualization method is proposed. It maps individu-
als from a high-dimensional objective space into a 2-D polar
coordinate plot while preserving Pareto dominance relationship,
retaining shape and location of the Pareto front, and maintain-
ing distribution of individuals. From it, a decision-maker can
observe the evolution process, estimate location, range, and dis-
tribution of Pareto front, assess quality of the approximated
front and tradeoff between objectives, and easily select pre-
ferred solutions. Furthermore, its applications can be scalable
to any dimensions, handle a large number of individuals on
front, and simultaneously visualize multiple fronts for compar-
ison. Based on this visualization tool, a performance metric,
named polar-metric, is designed. The convergence of the approx-
imate front is measured by radial values of all population
members on that front. Meanwhile, the diversity performance is
mainly determined by niche count of each subregion in a high-
dimensional objective space. Experimental results show that it
can provide a comprehensive and reliable comparison among
MaOEAs.

Index  Terms—Many-objective  evolutionary
(MaOEA), many-objective optimization problem
mapping, performance metric, visualization.

algorithm
(MaOP),

I. INTRODUCTION

ANY real-world multiobjective optimization prob-

lems (MOPs) involve more than three conflicting objec-
tives, which are commonly referred to as many-objective
optimization problems (MaOPs). Visualization of population
in a high-dimensional objective space throughout the evolution
process presents an opportunity that could be well exploited in
designing many-objective evolutionary algorithms (MaOEAs).
High-quality visualization tools can provide accurate shape,
location, and range of the approximate Pareto front, reflect
tradeoffs between objectives, observe the evolution process,
assess the quality of the approximated front, and help decision-
makers select their preferred solutions [1]. In low-dimensional
spaces with two or three objectives, scatter plot shows the loca-
tion, distribution, and shape of the obtained approximate front,
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where each axis directly represents one objective. From scat-
ter plot, a decision-maker can easily make choices and select
preferred solutions if so desired. However, due to the curse of
dimensionality, it is no longer an option in high-dimensional
objective spaces.

Naturally, we thought about developing strategies to reduce
the number of objectives while preserving as much informa-
tion of all objectives as possible. If the number of objectives
is reduced to be two or three, then we can easily visu-
alize the approximate Pareto front by a scatter plot. For
instance, Brockhoff and Zitzler [2] first identified conflict and
nonconflict relationships between each pair of objectives and
then combine nonconflicting objectives into one objective.
Saxena et al. [3] presented a principal component analysis
and maximum variance unfolding based framework for lin-
ear and nonlinear objective reduction algorithms, respectively.
Lygoe et al. [4] exploited local harmony between objectives to
reduce dimensionality by clustering the Pareto-optimal front
and apply a rule-based principal component analysis includ-
ing preference articulation for potential objective reduction.
However, there are many problems whose objectives cannot
be further reduced. Moreover, in some problems, eliminat-
ing a very small number of objectives does not help for
visualization.

In this paper, there are many visualization approaches
designed for viewing high-dimensional data. The first type of
methods, including various forms of parallel coordinates [5]
and heatmaps [6], represents each high-dimensional solution
on a parallel coordinate system. For an M-dimensional objec-
tive space, the whole parallel coordinate system contains
M parallel axes, each of which corresponds to one objective.
This method can only retain the original objective values of
solutions. In order to provide information about the trade-
off relationships between objectives for a decision-maker,
it requires the objectives of interest to be positioned adja-
cent to each other. However, the number of comparisons
among different adjacent objectives would grow exponen-
tially with the number of objectives. In addition, it is not
able to show the contour information of a given approxi-
mate Pareto front [1]. The second type of methods, including
Buddle chart [7], radial coordinate visualization (RadViz) [8],
self-organizing maps (SOMs) [9], Sammon mapping [10],
and neuroscale [11], constructs the mapping from a high-
dimensional objective space into a 2-D space while preserving
local distances between each pair of solutions in a high-
dimensional space. From the 2-D space, decision-makers can
easily determine their preferred solutions. However, these
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mapping approaches often inadvertently lose some critical
information in the mapped 2-D space. Furthermore, in the
mapped 2-D space, it is still not intuitive to discover the
shape of the approximate front and tradeoffs between objec-
tives. Based on the above discussions, it remains difficult to
visualize Pareto front approximations using present technolo-
gies. An effective visualization method is needed to provide
accurate and comprehensive information for the approximate
Pareto front in high-dimensional objective spaces.

On the other hand, there is no performance metric
specifically designed for comparison of MaOEAs in high-
dimensional MaOPs. In this paper, there are many effective
performance metrics used to compare multiobjective evolu-
tionary algorithms (MOEAS) in low-dimensional MOPs. Most
of these metrics are originally designed for low-dimensional
problems. Even so, Okabe et al. [12] have showed that many
metrics may fail to truly reflect the quality of solution sets and
some metrics work only for bi-objective optimization prob-
lems. When comes to high-dimensional objective spaces, these
metrics cannot perform faithfully as in the low-dimensional
spaces. In [13], we have applied an ensemble method for
comparison of MaOEAs as any performance metric alone
cannot quantify the performance of an MaOEA comprehen-
sively. Although this ensemble method has shown its powerful
ability in providing a comprehensive measure, it still uses
multiple metrics mainly designed for low-dimensional MOPs.
Therefore, in high-dimensional objective space, performance
metric ensemble based on existing performance metrics can-
not provide convincing comparison results. There still needs
a comprehensive study to reveal the strengths and weaknesses
of the underlying MaOEAs.

In this paper, a new visualization method for high-
dimensional objective spaces is designed. It maps individuals
from a high-dimensional space into a 2-D polar coordinate
system with pole (0, 0), where each individual is assigned
a radial coordinate value and an angular coordinate value.
Radial coordinate reflects convergence performance of each
individual and it is determined by the original objective value
of each individual and the shape of the approximate front in
a high-dimensional space. The smaller the radial coordinate
value, the closer the distance is to the true Pareto front. On
the other hand, angular coordinate reveals distribution of indi-
viduals on the approximate front. It also shows crowdedness in
each subregion of a high-dimensional space. The more number
of different angular coordinate values among all individuals,
the better distribution and spread of the approximate front is.

This method retains Pareto dominance relationship between
individuals on the approximate Pareto front, preserves shape
and location of Pareto front, and maintains distribution of
solutions. From it, decision-makers can observe the evolution
process, estimate location, range, and distribution of Pareto
front, assess the quality of the approximate front and tradeoff
between objectives, and easily select their preferred solu-
tions. This design can be scalable to any dimensions, handle
a large number of individuals on the approximate front, and
simultaneously visualize multiple fronts for the purpose of
visual comparison. Moreover, the resulted visualization plot
is insensitive to the addition or removal of an individual.
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Fig. 1.

Based on this proposed visualization approach, a perfor-
mance metric called polar-metric (-metric) is designed to
quantify the performance of MaOEAs. The convergence of
the approximate front is measured by radial values of all
population members on that front, which are the result of
a scalarization function. Meanwhile, the diversity perfor-
mance of the approximate front is mainly determined by
niche count of each subregion in a high-dimensional space.
Experiment results show that p-metric with robust charac-
teristic makes comparative results a quality indicator of the
evaluated MaOEAs.

The remaining sections complete the presentation of this
paper. Section II outlines selected literature for both existing
visualization approaches and performance metrics. Section III
elaborates on the proposed visualization method in detail and
the design of new performance metric, p-metric, based on
the visualization approach proposed. Section IV details the
experimental setting and findings for selected scalable bench-
mark problems. Finally, the conclusion is drawn in Section V
along with pertinent observations. Without loss of generality,
in the remaining paper, we only consider the minimization
problems.

II. LITERATURE SURVEY

In this section, we summarize both popular visualization
approaches available for MaOPs and performance metrics
designed specifically for evaluation of MaOEAs.

A. Popular Visualization Approaches for MaOPs

In a low-dimensional space with two or three objectives,
a scatter plot shows the location, distribution, and shape of the
approximated front, where each axis directly represents one
objective. From a scatter plot, a decision-maker easily makes
choices and picks up preferred solutions. However, it cannot be
extended to high-dimensional objective spaces with more than
3-D. As an extension of scatter plot, Buddle chart [7] uses
size and color to represent the fourth and fifth dimensions,
respectively, so that the number of visualization dimensions
is limited to five. Fig. 1 shows examples of scatter plot in 2-D
and 3-D objective spaces, respectively.

In this paper, there are two types of visualization meth-
ods designed for visualizing high-dimensional data. The
first type of methods, including parallel coordinates [5] and
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Visualization of the true Pareto front of 5-D DTLZ2 using different visualization methods. (a) Our proposed method. (b) Buddle chart. (c) Parallel

coordinates. (d) Heatmap. (¢) Sammon mapping. (f) Neuroscale. (g) RadViz. (h) SOM. (i) Isomap.

heatmaps [6], represents each high-dimensional solution on
a parallel coordinate system. The second type of methods,
including RadViz [8], SOM [9], Sammon mapping [10],
and neuroscale [11], constructs the mapping from a high-
dimensional objective space into a 2-D space while pre-
serving local distances and Pareto dominance relationship
between each pair of individuals in a high-dimensional space.
Fig. 2 shows visualization of the true Pareto front (with the
population size 126) of 5-D DTLZ2 using all these exist-
ing visualization methods and our proposed method (to be
discussed in Section III).

1) Visualization Based on Parallel Coordinate System: For
an M-dimensional objective space, the respective parallel coor-
dinate system would contain M parallel axes, each of which
represents one objective. This method can directly show the
original objective values of solutions, does not require sophis-
ticated mappings of vector, and can be easily scaled into higher
dimensions. In the objective space, if objectives of interest are
positioned adjacent to each other, this method can also provide
information about the tradeoff relationships between objectives

and contour information of the approximate Pareto front for
decision-maker.

a) Parallel coordinates [5]: Each M-dimensional vector
is represented by a polyline with vertices on the parallel axes,
where each axis represents one objective and the position of
the vertex on each axis equals to the objective value in that
dimension [1]. The most appreciable benefit of parallel coordi-
nates is clearly representing dependences between objectives.
However, each individual needs one polyline and there will
be many polylines if the number of individuals is large. There
exist creative ways to address the issue of over-crowded lines,
such as [39].

b) Heatmap [6]: Similar to parallel coordinates, heatmap
still uses parallel axes where each axis represents 1-D.
However, in a heatmap, objective values are shown using color
while they are represented by polyline in parallel coordinates.
A heatmap cannot show tradeoffs between objectives, either.
Meanwhile, the increasing number of solutions requires more
and more colors to be used and it is not easy to visually
distinguish among such a large number of colors.
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2) Visualization Based on Mapping: This type of methods
uses some more sophisticated mapping techniques to perform
dimension reduction to the 2-D space. All mapping methods
try to preserve Pareto dominance relationship among individ-
vals in a high-dimensional space and retain local distances
between each pair of them, where relative distances between
the representations of individuals in the visualization space
are required to be as close as possible to those in the original
objective space [14]. They are also scalable to many dimen-
sions. However, they are often computationally expensive and
not robust as the mapping heavily depends on the values of
the objective vectors in the approximate front. Meanwhile, all
kinds of mapping methods cannot avoid losing some impor-
tant information in a high-dimensional space. Furthermore, in
the mapped 2-D space, it is still not easy to discover the shape
of the approximate front and tradeoffs between objectives.

a) Sammon mapping [10] and neuroscale [11]: Both
approaches minimize the stress function to preserve the local
distances. In Sammon mapping, the minimization can be
performed either by gradient descent, or by other iterative
methods. It can also preserve the well distribution of solu-
tions. Neuroscale retains distances using a radial basis function
neural network to minimize the stress function.

b) Radial coordinate visualization [8]: The idea of
RadViz is originated from physics. In RadViz, objectives rep-
resented as dimensional anchors are distributed evenly on the
circumference of the unit circle. Each individual is held with
springs attached to the anchors and the spring force is propor-
tional to the value in the corresponding objective. The position
of the individual is located on where the spring forces are
in equilibrium. For example, solutions that are placed close
to one anchor have a higher value in that objective than
in any other objectives, while solutions with all equal val-
ues in all dimensions are placed exactly in the center of the
circle. It is able to preserve well the distribution of vectors
but it cannot distinguish the shape of the approximate Pareto
fronts.

c) Self-organizing map [9]: The SOMs are one type
of artificial neural networks providing a topology preserving
mapping from M-dimension (M > 2) to a lower dimension
(usually 2-D). Nearby vectors in the input high-dimensional
space are mapped to nearby units (neurons) in SOMs. The neu-
ron can be hexagonal grid [15]. When trained, SOMs can be
visualized using a unified distance matrix, where the distance
between adjacent neurons is presented with different colorings.
Light areas represent clusters of similar neurons and dark areas
indicate cluster boundaries.

d) Isomap [16]: Isomap preserves the intrinsic geometry
of solutions when mapping to 2-D space using multidimen-
sional scaling [17], where each solution is linked only to its
closest neighbors. The geodesic distance between both of them
is calculated as the sum of Euclidean distances of the shortest
path between them.

B. Existing Performance Metrics for MaOEAs

Performance metrics can be broadly divided into five dif-
ferent categories according to the optimization goals [13].

The first category involves metrics assessing the number
of Pareto optimal solutions in the set: ratio of nondomi-
nated individuals (RNI) [18] measures the proportion of the
nondominated solutions found with respect to the popula-
tion size; error ratio [19] checks the proportion of nontrue
Pareto points in the approximate front over the popula-
tion size; overall nondominated vector generation [19] sim-
ply counts the number of distinct nondominated individuals
found; and the n-ary performance metric, pareto dominance
indicator [20], measures the ratio of nondominated solutions
contributed by a particular approximate front to the non-
dominated solutions provided collectively by all approximate
fronts. Within the second category, metrics measuring the
closeness of the solutions to the theoretical true Pareto front
for a given benchmark function are given: generational dis-
tance (GD) [19] measures how far the evolved solution set
is from the true Pareto front; a complementary metric of
GD called inverted GD (IGD) [21] concerns how well is
the Pareto-optimal front represented by the obtained solu-
tion set; and maximum pareto front error [19] focuses on
the largest distance between the individual in the theoreti-
cal Pareto front and the points in the approximation front.
In the third category, metrics are relating on distribution of
the solutions: uniform distribution [18] quantifies the distri-
bution of an approximate front under a predefined parameter;
spacing [22] measures how evenly the evolved solutions dis-
tribute themselves; and the number of distinct choices [23]
identifies solutions that are sufficiently distinct for a spe-
cial parameter . Fourth, metrics concerning spread of the
solutions are included: maximum spread (MS) [24] mea-
sures how well the true Pareto front is covered by the
approximation set. In the last category, metrics consider both
closeness and diversity at the same time: hyperarea and
ratio (or S-metric) [24], [25] calculate the volume covered
by the approximate front with respect to a properly chosen
reference point.

However, in high-dimensional objective spaces, these met-
rics cannot perform as well as in the low-dimensional spaces.
For example, spacing is very effective to measure the distri-
bution of the approximate front in low-dimensional MOPs by
calculating the distance between each individual and its closest
neighbor. However, in a high-dimensional space, it is difficult
to identify this closest neighbor due to a large objective space
requiring a heavier computation workload. The IGD which
calculates the distance between each individual in the true
Pareto front and its closest individual in the approximate front
for a given MaOP also suffers this difficulty. Furthermore,
S-metric can measure both convergence and diversity perfor-
mances in low-dimensional spaces, but in high-dimensional
MaOPs, the calculated volume cannot reflect the distribution
of the approximate Pareto front very well. Moreover, it is
fairly computational expensive for an MaOP. For MS met-
ric, it may prefer the nonconverged approximate front than
the converged but not well spread front in an MaOP. Finally,
in a high-dimensional space, nearly all individuals are non-
dominated with respect to each other [26]. As a result, the
metric RNI cannot provide much useful evaluation result
in MaOPs.
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Fig. 3. 2-D polar coordinate system.

III. PROPOSED METHOD

In this section, first a new visualization method for the
approximate Pareto front in a high-dimensional space is pro-
posed. Then, based on this visualization approach, a new
performance metric, called p-metric, is developed specifically
for evaluating MaOEAs in both convergence and diversity
performances in a high-dimensional objective space.

A. Visualization Method

A new visualization method that preserves Pareto domi-
nance relationship between individuals on the approximated
Pareto front, retains shape and location of Pareto front, and
maintains distribution of solutions is proposed herein. From it,
decision-makers can monitor the evolution progress, estimate
location, range, and distribution of approximate Pareto front,
assess quality of the approximate front and tradeoff between
objectives, and easily select their preferred solutions. This
design can be scalable to any dimensions, handle a large
number of individuals on the approximate front, and simul-
taneously visualize multiple fronts, if so desired, for visual
comparison. Moreover, it is insensitive to the addition or
removal of a vector.

By this design, individuals are mapped from a high-
dimensional Cartesian space into a 2-D polar coordinate
system with pole (0, 0). Each individual is assigned a radial
coordinate value and an angular coordinate value in this polar
coordinate system. The radial coordinate of one individual
reflects its convergence status and is determined by both
its original objective values and the shape of the approxi-
mate front in a high-dimensional space. Angular coordinates
of all individuals show distribution of individuals on the
approximate front and the crowdedness in each subregion of
a high-dimensional space. Fig. 3 shows an example of a 2-D
polar coordinate system. For solution x1, its radial coordinate
value is r; and angular coordinate value is 6. For solu-
tion x», its radial coordinate value is r» and angular coordinate
value is 65.

1) Visualization Based on Mapping: Fig. 4 shows the com-
plete mapping process. First, the original high-dimensional
objective space is equally divided into N subregions, each
of which is represented by one direction vector so that all
direction vectors are evenly distributed. Then, each direction
vector is mapped as one 2-D vector called mapped direction
vector in a 2-D polar coordinate system. In this 2-D space,
each mapped direction vector is assigned an angular coordi-
nate value 6. Table I shows an example of the mapping process
from a 3-D space to a 2-D space. Here, the original 3-D space

Original High-dimensional Objective Space |

Sub region 1 [ Subregion2 | o o o [ SubregionN |~ High-
| dimensional
Direction Direction 000 Direction Space
Vector 1 Vector 2 Vector N | _ l
Mapping
Mapped Mapped - Mapped |7
Direction 1 Direction 2 Direction N
Low-
~ dimensional
Angular Angular 0 o0 Angular niie
Value 6 Value 6, Value Oy [
Fig. 4. Proposed mapping process.
TABLE I

MAPPING FROM 3-D TO 2-D SPACES

Sub Region Direction Vector Mapped Direction 0;
(3D) (3D) (2D) (2D)
1 0 0 1 2 0
2 0 0.25 | 0.75 v, 24°
3 0 0.5 0.5 V3 48°
4 0 0.75 | 0.25 A 72
5 0 1 0 Vg 96°
6 0.25 0 0.75 Vg 120°
7 025|025 | 05 v, 144°
8 025 | 0.5 | 0.25 Vg 168°
9 0.25 | 0.75 0 Vg 192°
10 0.5 0 0.5 V1o 216°
11 0.5 | 0.25 | 0.25 vy 240°
12 05 | 05 0 vy, 264
13 0.75 0 0.25 Vi3 288’
14 0.75 | 0.25 0 Vig 312°
15 1 0 0 Vis 336°

Fig. 5.

Mapped 2-D space.

is evenly divided into 15 subregions. The mapped 2-D space is
shown in Fig. 5, where each mapped direction (vy, v, ..., and
v15) is assigned a fixed angular coordinate value (61, 6, ...,
and 615), respectively. Meanwhile, each v;, i = 1 : 15 repre-
sents one subregion in the original high-dimensional space. For
example, individual x| on the subregion of high-dimensional
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Individual i is closest
to direction vector j,

High-
l dimensional
Individual i on space
j1th sub region
Individual i is along
mapped direction v;,
Low-
\ dimensional
Individual i is space

assigned angular
value 6;,

Fig. 6. Angular coordinate value assignment for each individual.

space corresponding to v3 is assigned the angular value 63
(i.e., 48°) in the mapped 2-D space.

Note that, on this 2-D polar coordinate system, the order
of direction vectors is only determined by the order to gen-
erate them in the original high-dimensional space, where the
generating process is shown in Table 1. That is, even though
two direction vectors are closest to each other in a 2-D polar
coordinate system, they may not be closest to each other
in the original high-dimensional space, e.g., vo and vjp in
Fig. 5. On the other hand, the distribution performance of the
whole approximate front can only be measured by checking
the difference of crowdedness among direction vectors. If two
solutions are mapped into different directions in a 2-D polar
coordinate system, we cannot directly derive their relative dis-
tance by looking at the mapped 2-D space. For example, if
a solution is located at the direction of vy in the 2-D polar
coordinate system, it only implies that this solution is located
in the subregion specified by vy and it cannot provide any
information that the relative distance between this solution to
another direction vectors vig or vy in the high-dimensional
space. Furthermore, we do not consider about the distribution
of solutions within each direction vector because solutions in
the same direction vector are assigned the same angular value.

2) Calculation of Angular Coordinate Value: From the
last section, a group of equally distributed direction vectors
are predefined in a high-dimensional space, each of which
specifies a unique subregion in a high-dimensional objective
space. Then, each vector is mapped to the 2-D space and
assigned a fixed angular coordinate value. For each individ-
ual in high-dimensional space, its angular coordinate value in
the 2-D polar coordinate system is the same as the value of
its closest direction vector in the original high-dimensional
space. Fig. 6 shows the process of how to assign the angu-
lar coordinate value for each individual. If more solutions
share the same angular coordinate, then they are crowded in
one subregion. Thus, they have a poor diversity performance.
Furthermore, if two solutions have very close radial and angu-
lar values, then they are very close to each other in the original
high-dimensional space.

3) Calculation of Radial Coordinate Value: From the first
two sections, we have known how to assign angular coordinate

Concave
121 — - — - Convex
Linear

02f L e,

o,
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o 01 0.2 03 04 05 0.6 0.7 0.8 0.9

Fig. 7. Three basic geometric types of Pareto fronts.

value for each individual in the mapped 2-D space. In this part,
we will assign radial coordinate value for each individual in
the mapped 2-D space.

In this paper, there are three basic geometric shapes of
Pareto fronts for an MaOP. They are concave, convex, and
linear. From [26], a Pareto front is concave if and only if it
is covered by its convex hull. On the other hand, a convex
Pareto front implies that it covers its convex hull. Furthermore,
a linear front neither covers its convex hull nor be covered
by its convex hull. These three types of Pareto fronts in
a two-objective problem are shown in Fig. 7.

Based on three basic shapes, a mixed front would contain
multiple subparts with different types of geometries. For exam-
ple, one mixed front can be a combination of convex and
linear. On the other hand, a degenerated front is of lower
dimension than objectives space where it is embedded [22]
and a disconnected front means that the front is not continu-
ous across the objective space. Here, similar to a mixed front,
degenerated front and disconnected front can still be generated
by the combination of three basic shapes. Therefore, we focus
only on the mapping of these three fundamental types of fronts
from a high-dimensional space to the mapped 2-D space.

In an M-dimensional optimization problem, when the
Pareto front is concave, there is a constant r such that
Z%:l( fm x)* = 2 for any solution x on the true
Pareto front, where the objective value of x is presented as
[fix),2(x),...,fu(x)]. When the Pareto front is convex,
there is also a constant r such that Z%: ((r— Ffin()? = 2 for
any solution x on that true Pareto front. For the linear Pareto
front, there exists a constant r such that Z%:] fm(x) = r for
any solution x on the true Pareto front. The constant r can
be directly used to evaluate the convergence performance of
each individual on different shape of fronts. For the mini-
mization problem, the lower the value of r, the better the
convergence performance is. Figs. 8-10 show different »'s
under three different shapes of fronts within a two-objective
space (the original space without mapping) for the purpose
of visualization only. Under all geometric shapes, the Pareto
front with radial coordinate value | has a better convergence
performance than that of Pareto front with r, because r; is
smaller than r, in all three cases.

Furthermore, this mapping process provides a way to visu-
alize the shape of the approximate front in a high-dimensional
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space from a 2-D polar coordinate system. For example, a lin-
ear approximate front in a high-dimensional space still consists
of a few number of linear subfronts in a two-objective space
after mapping. Fig. 11 shows three different types of fronts in
a two-objective polar coordinate system. The concave front in
a high-dimensional space is mapped as four subconcave fronts
in the mapped 2-D space for an easy understanding. Similarly,
convex front in a high-dimensional space is also mapped as
four subconvex fronts in the mapped 2-D space, while the
linear front in a high-dimensional space is mapped as four
sublinear fronts in the mapped 2-D space.

In order to better explain the whole mapping process,
Fig. 12 shows how a linear Pareto front in the original 2-D
space is mapped to a 2-D polar coordinate plot.

4) Visualization of Benchmark Pareto Fronts: In this sec-
tion, we will demonstrate the proposed visualization approach
through visualizing some well-known benchmark functions.
First, in Fig. 13, five widely used bi-objective ZDT test
instances are visualized, each of which contains different prob-
lem characteristics: convex front in ZDT1, concave front in
ZDT2, discrete front in ZDT3, local fronts in ZDT4, and
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nonuniform distributed front in ZDT6. Fig. 13 shows both
original plots (left) in 2-D objective spaces and mapped
plots (right) in the polar coordinate system for ZDT test
instances. In each test instance, solutions in the original plot
are mapped to positions of solutions with the same color in
the mapped plot.

Finally, we look at walking fish group (WFG) problems.
One important characteristic of WFG problems is that each
objective has different range. Fig. 14 shows both the original
plot (left) in a 2-D space and the mapped plot (right) using
WFG4 as an example. In the original plot, the Pareto front
comes with dissimilar tradeoff, which is reflected by different
radial values of solutions in the mapped plot.

5) Visualization When True Pareto Front is Unknown: For
each individual in a high-dimensional space, the calculation
of radial value r in 2-D coordinate system depends on the
approximate Pareto front it locates on. If the front is concave,
the corresponding calculation way is Z%:l( Fn)? = 2. If it
is convex, the corresponding calculation way is Zl‘nle(r -
fn)? = 2. If it is linear, Y™ £,,(x) = r is applied.
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Fig. 13.  Visualization of ZDT test instances.

If the true Pareto front is known beforehand, the shape of
the approximate Pareto front can be directly determined and
its corresponding calculation way is applied to determine r.
If the true Pareto front is unknown, we first determine the
shape of the approximate front based on the objective values
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of individuals on the front. Here, we assume this approximate
front is well converged and diversified. It is obvious that an
approximate front with poor convergence and diversity cannot
provide any useful information for the shape of the true Pareto
front and the characteristics of the optimization problem. Then,
each calculation way is applied to each individual. Under the
same calculation way, if most individuals achieve nearly equal
value of r, the corresponding shape of this way of calculation
is considered as the shape of the approximate front.

For the mixed front, although no equal r exists for most
individuals under the same way, nearby individuals will share
the similar value of r’s and the total number of different r’s
is very small, where each r represents one different shape.
Fig. 15 shows one example of calculating r of each individual
on the mixed front, an artificially crafted MOP. On the left
side, the original Pareto front contains three different parts:
1) concave (blue); 2) linear (black); and 3) convex (red). This
mixed Pareto front is mapped to the front on the right polar
plot, where the blue still represents concave part, the black is
for linear part, and the red shows convex part. From Fig. 15,
nearby individuals in a high-dimensional space contain the
similar values of r’s and they are still located at nearby posi-
tions in the mapped plot (in a 2-D polar coordinate system).
Meanwhile, each part of Pareto front is continuous in both
high-dimensional space and the mapped 2-D Polar coordinate
system while it preserves the same shape. Therefore, from
the mapped 2-D polar plot, it is easy to visualize how many
subparts of this mixed front contains, what the shape of each
part is, and how the convergence and diversity performances
of each subpart achieves.

In order to make the proposed calculation method more gen-
eral, for the approximate front with both poor convergence
and diversity, where no common r exists for most individuals
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under the same calculation way and all individuals main-
tain distinct values of r’s, we choose the calculation way as
Z%:l( fm(x))2 = 72 for this front. This way is chosen in
that it contains the same form as Euclidean distance which is
the most widely used approach to calculate distance between
individuals in a high-dimensional objective space.

In summary, it remains a challenging problem to accurately
determine the shape of the underlying approximate front. In
our experiment, if more than ten individuals on the front
achieve a similar r under one shape, we identify these individ-
uals and construct a subfront with that shape which is a part
of the whole approximate front.

As a matter of fact, the way to calculate r can be consid-
ered as a scalarization function, where the input is the original
objective values of individuals in a high-dimensional space and
the output is radial values in a 2-D polar coordinate system.

6) Summary of Proposed Visualization Method: In sum-
mary, this visualization method maps individuals from a high-
dimensional objective space into a 2-D polar coordinate system
with pole (0, 0), where each individual is assigned a radial
coordinate value and an angular coordinate value. Radial coor-
dinate reflects convergence performance of each individual and
it is determined by the original objective value of each individ-
ual and shape of the approximate front in a high-dimensional
space. The smaller the radial coordinate value, the closer it
is to the true Pareto front. On the other hand, angular coor-
dinate reflects distribution of individuals on the approximate
front. It also shows crowdedness in each subregion of a high-
dimensional space. The more number of different angular
coordinate values among all individuals, the better distribu-
tion and spread of the approximate front is. Fig. 16 outlines
the whole process of visualization.

This visualization method mainly contributes in four
aspects. First, the mapping between a high-dimensional space
and a 2-D coordinate system is consistent. It preserves Pareto
dominance relationship, retains shape and location of Pareto
front, and maintains distribution of solutions. Second, visual-
ization makes it possible to observe the evolution process so
as to estimate location, range, and distribution of approximate
Pareto front. Third, decision-making is easy and effective.
Decision-maker can assess quality of the approximate front
and tradeoff between objectives, and easily select preferred
solutions. Finally, the application can be scalable to any
dimensions, handle a large number of individuals on the
front, and simultaneously visualize multiple fronts for visual
comparison.

In our method, Euclidean distance is used for calculating
distances instead of other p-norm. Among various choices of
p-norm, Tessema and Yen [40] pointed out that lower value
of p produces better contrast between the maximum and min-
imum distance in the objective space than larger values of p.
Therefore, the Euclidean distance with the norm two is more
effective than the other p-norm.

B. Performance Metric Based on Visualization Method

Based on this visualization approach, a new performance
metric called p-metric, is proposed specifically for evaluating

Input: an M-dimensional approximated front (M > 2)

Step1: Calculation of Radial Coordinate Value

1) Determine the shape of the approximate front
Concave: Z]%:l()’,,l(x))2 =72
Convex: YM_,(r — fm(x))2 =r?
Linear: XM _. fn(x) =71

2) If most individuals achieve the same value of r under
one shape, this shape is considered as the shape of the
approximate front

3) If most nearby individuals achieve the same value of r
and the total number of different r is small, this front is
considered as the mixed front. Each sub part is
calculated independently

4) If most individuals get distinct individuals from others
and the total number of different r is large, treat this
front as a concave front

Step2: Calculation of Angular Coordinate Value
1) A group of equally distributed direction vectors are
predefined in high-dimensional space. Each vector
specifies one sub region
2) Each vector is assigned a fixed angular coordinate
value. The angular coordinate difference in degree
between two vectors is similar to the distance between
both of them in high-dimensional space.
3) For each individual on the approximate front, find the
sub region it locates on
for j =1:N %N: NO. direction vectors
%w;: the jth direction vector
__wifi
T Twjlinra
end
Find j, =arg 1":“11% G-

%f;: objective value of individual i

Then ith individual belongs to j,th sub region and its
angular coordinate value is equal to that of j,th
direction vector

Output: a two-dimensional approximated front with the same
shape as the high-dimensional one

Fig. 16. Proposed visualization process.

MaOEAs in both convergence and diversity performances in
a high-dimensional objective space. For each direction vec-
tor, find its associated approximate solution with the smallest
radial value . Then, the performance contribution in this direc-
tion d is 1/r. If it does not have an associated solution,
performance contribution d is 0. Finally, performance score
of the whole approximate front is the sum of all performance
contribution from each direction. The larger the value of metric
score, the better the performance of the approximate front is.
Fig. 17 shows the detailed steps of implementing the proposed
performance metric, p-metric.

1) Comparison of p-Metric With IGD and Hypervolume:
In this paper, IGD and hypervolume indicator (also called
S-metric) are widely applied to compare the performance
of MaOEAs. However, both of them are originally designed
for comparison in low-dimensional objective spaces and they
have distinct disadvantages when applied to high-dimensional
objective spaces. On the other hand, these disadvantages
are overcome by the proposed p-metric, which is designed
specifically for high-dimensional objective spaces.

First, in a high-dimensional objective space, it is possi-
ble that one approximate solution is much better than others
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Input: a group of solutions in two-dimensional approximated front

Step1: For each direction vector, find its associated solution with
the smallest radius r.
for j = 1: N %N: NO. direction vectors
% N;: NO. associated solutions for direction vector j r =
1i_Irv1_rL- % r; is the radius value of solution i

=1
% d; is the performance contribution in direction j
d; =}when N;>0,d; =0when N; =0
end
Step2: Performance score of the whole approximated front is the

sum of all performance contribution from each direction.
S =Y j-1.nd; %S: performance score

Output: performance score of the whole approximated front (S)

Fig. 17. Details of performance metric: p-metric.

on the same approximate front. Then the front’s IGD and
S-metric scores are only determined by this extreme good
solution, which violates the strong outperformance relation
defined in [27]. Figs. 18 and 19 show these special instances
under both metrics, respectively, that violate strong outperfor-
mance relation. On the other hand, p-metric preserves Pareto
dominance optimality in both figures.

In Fig. 18, on the left subfigure, all solutions except x; on
the approximate front 1 are dominated by at least one solution
on the approximate front 2. Only x; is nondominated with
all solutions on the approximate front 2. However, when IGD
metric is applied to measure performance of both approximate
fronts, front 1 will obtain a better score (i.e., 0.9) than that of
front 2 (i.e., 1.05). This is determined by the way how IGD is
calculated. In IGD, each solution in the true Pareto front finds
its closest solution on the approximate front, and calculates the
distance between them. When it comes to front 1, all solutions
in the true Pareto front will choose x; as their closest solution
on the approximate front. From the left subfigure, the distance
between x; and each solution on the true front is small. When
it comes to front 2, although each solution in the true front can
find different approximate solutions, the distance between each
pair of them is larger than that between x; and each solution
on the true front. Therefore, front 1 receives a better score
than front 2 under IGD metric. However, front 2 has a better
diversity performance and its solutions dominate most of the
solutions on front 1. The result of IGD metric clearly violates
strong outperformance relation.

In Fig. 19, on the left subfigure, two approximate fronts are
compared by using S-metric. Area enclosed by the approxi-
mate front 1 is larger than that of front 2. Therefore, front 1
obtains a better S-metric score (i.e., 6.625) than that of front 2
(i.e., 4.265). However, all solutions except x; on the approx-
imate front 1 are dominated by at least one solution on the
approximate front 2. Furthermore, front 2 has a better diversity
measure than that of front 1. Therefore, the result of S-metric
also violates strong outperformance relation.

When p-metric is applied in this condition, approximate
front 2 will obtain a better score than that of front 1 based on
two points. First, the convergence performance of each solu-
tion is determined by its radial coordinate value. Dominated

f f2 @ Approximate Front 1
@ ApproximateFront 1 @ Approvimate Front 2

0 @ fpprosimatefront2 €] @ TrueParetoFront
. @ TrueParetoFront 'y —> Direction Vector

Front1: 0.9000 Front1: 1.845

‘e Front2: 1.0500 Front2: 2.500
0
0
[}
0
4 fi fi
IGD p-metric
Fig. 18. Instance that IGD score violates strong outperformance relation.
@ ApprovmateFront 1 © Approximate Front 1
@ Approimte Front2 @ Approximate Front 2
f Reference Point Refe.renc‘e Point
f2 = Direction Vector
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‘ .-
flim e FrontL: 1.755
Front2: 4.265 Front2: 2.500
K"
x': . N
i fi
S-metric p-metric

Fig. 19. Instance that S-metric score violates strong outperformance relation.

solution must contain worse radial coordinate values than
those of nondominated ones, which penalizes the dominated
solutions. Second, the diversity performance of the whole
approximate front is based on angular values of all solutions
on that front. If more solutions share the same angular coordi-
nate, then they are crowded in one subregion. Thus, solutions
in the crowded area are penalized.

On the right subfigures of both Figs. 18 and 19, p-metric
prefers the approximate front 2 over the approximate front 1.
Here, each solution on the approximate front 2 belongs to
different direction vector. Therefore, all solutions’ radial coor-
dinate values can be counted toward the final performance
measure in p-metric. On the other hand, there are two solutions
on the approximate front 1 that belong to the same direc-
tion vector. Therefore, only one solution’s radial coordinate
value can be counted. Furthermore, from the figure, the aver-
age radial coordinate value of solutions on the approximate
front 1 is larger than that of solutions on front 2. Based on
the above discussion, p-metric prefers front 2 over front 1.

Second, in a high-dimensional space, all solutions on the
same front may focus on only one local optimal solution.
Therefore, there is no diversity among them. However, this
poor performance is not faithfully reflected by the score of
IGD and S-metric. Fig. 20 illustrates this condition in IGD
and S-metrics, respectively.

In Fig. 20, all solutions on the approximate front 1 are
located at the same neighborhood. There is nearly no
difference among these solutions. However, both metrics
(IGD and Hypervolume) still prefer front 1 based on the ways
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Fig. 20. IGD and S-metric prefers approximate front 1 over front 2.
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@ Approximate Front 2
i @ TrueParetoFront
Front1: 0.625
Front2: 2.500
———/
Fig. 21. p-metric prefers approximate front 2 over front 1.

they are calculated. The extremely poor diversity of front 1
cannot be revealed by scores of both metrics.

In Fig. 21, when p-metric is applied, all solutions on
front 1 belong to the same direction vector while each
solution on front 2 belongs to different vector. Although solu-
tions on front 1 contain a little bit smaller average radial
coordinate value than that of front 2, front 2 will receive
a better performance score using p-metric due to its better
distribution.

The problems highlighted above appear more frequently in
MaOPs. Based on the above discussion, both IGD and S-metric
cannot provide accurate comparison results for MaOEAs.
The proposed p-metric, on the other hand, can be applied
to make a comprehensive and accurate comparison among
MaOEAs.

IV. EXPERIMENTAL RESULTS

In this section, five state-of-the-art MaOEAs are chosen to
solve 5-D and 10-D benchmark functions DTLZ1-DTLZ7 and
generate the approximate fronts for each problem. For each
scalable test instance, the proposed visualization approach is
then used to map the resulted approximation fronts (produced
by all five MaOEAs) from 5-D and 10-D objective spaces into
2-D polar plots for comparison. Afterward, all these fronts are
evaluated by p-metric and two existing metrics, including IGD
and S-metric. Finally, evaluation results from different metrics
are ranked to reveal the insights pertaining to the performance
of each metric.

A. Selected MaOEAs for Comparison

In the experiment, five state-of-the-art MaOEAs are chosen
for visual comparison. They are reference-point based many-
objective nondominated sorting genetic algorithm (NSGA)-II
(NSGA-III) [28], e-domination-based MOEA (e-MOEA) [29],
MOEA based on decomposition (MOEA/D) [30], grid-based
evolutionary algorithm (GrEA) [31], and hypervolume estima-
tion algorithm for multiobjective optimization (HypE) [32].

Each algorithm represents one different class of designs in
this paper. NSGA-III emphasizes diversity performance and
a new diversity-preservation operator is designed to guide
the population spread during the evolution process and well-
distributed with respect to each other. e-MOEA modifies the
Pareto-dominance and incorporates grid to preserve diver-
sity. MOEA/D decomposes a MOP into a number of scalar
optimization subproblems and optimizes them simultaneously.
GrEA exploits the potential of the grid-based approach to
strengthen the selection pressure toward the optimal direc-
tion, while maintaining an extensive and uniform distribution
among solutions. HypE uses the hypervolume indicator to
directly assign each individual a fitness value revealing both
strengths and weaknesses of it.

B. Selected Benchmark Test Problems

Seven widely used scalable many-objective benchmark
problems are chosen to evaluate the performance of the
MaOEAs considered, DTLZ1-DTLZ7 [33]. In this experi-
ment, chosen MaOEAs are tested in 5-D and 10-D objective
spaces of these benchmark problems.

C. Parameter Setting in Experiment

The population size in all chosen MaOEAs is set to be
100 for all test instances. The stopping criterion is set at 10 000
generations. Initial populations are generated by uniform
random sampling from the search space.

The simulated binary crossover (SBX) and polynomial
mutation are used. The crossover operator generates one off-
spring, which is then modified by the mutation operator.
Following the practice in [34], the distribution indexes in SBX
and the polynomial mutation are set to be 20. The crossover
rate is 1.00, while the mutation rate is 1/m and m is the num-
ber of decision variables. As suggested in [34], for DTLZI1, m
is chosen to be 9 and 14 for 5-D and 10-D problems, respec-
tively, while for DTLZ2-DTLZ7, m is chosen to be 14 and
19 for 5-D and 10-D problems, respectively. For e-MOEA,
the parameter setting follows [31]. In MOEA/D [30], the
number of the weight vectors in the neighborhood of each
weight vector T is set to be 10. For HypE, according to [32],
10000 sampling points are used.

D. Experimental Results

Detailed  comparison  results are presented in
Tables II and III, where p-metric, IGD, and S-metric
are applied to compare the performance of five MaOEAs
on 5-D and 10-D DTLZ1-DTLZ7, respectively. For the best
visualization, it is more effective to choose the number of
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TABLE 11
PERFORMANCE OF MaOEAs ON 5-D PROBLEMS

MaOP | Rank p-metric IGD S-metric
DTLZ1 1 GreEA GreEA GreA

2 NSGA-III MOEA/D | MOEA/D

3 HypE HypE HypE

4 MOEA/D NSGA-IIl | NSGA-III

5 e-MOEA e-MOEA e-MOEA
DTLZ2 1 GreEA GreEA MOEA/D

2 NSGA-III e-MOEA HypE

3 e-MOEA NSGA-IIl | NSGA-III

4 HypE MOEA/D GreEA

5 MOEA/D HypE e-MOEA
DTLZ3 1 GreEA GreEA GreA

2 HypE HypE HypE

3 NSGA-III MOEA/D | MOEA/D

4 MOEA/D NSGA-IIl | NSGA-III

5 e-MOEA e-MOEA e-MOEA
DTLZ4 1 GreEA NSGA-IIl | MOEA/D

2 NSGA-III e-MOEA HypE

3 e-MOEA GreEA NSGA-III

4 HypE HypE GrEA

5 MOEA/D MOEA/D e-MOEA
DTLZ5 1 MOEA/D HypE MOEA/D

2 NSGA-III MOEA/D HypE

3 HypE NSGA-IIl | NSGA-III

4 e-MOEA e-MOEA e-MOEA

5 GrEA GrEA GrEA
DTLZ6 1 MOEA/D GreA MOEA/D

2 GreEA MOEA/D GreEA

3 NSGA-III HypE HypE

4 HypE e-MOEA NSGA-III

5 e-MOEA NSGA-III e-MOEA
DTLZ7 1 GreEA GrEA HypE

2 HypE HypE GreA

3 NSGA-III NSGA-IIl | MOEA/D

4 MOEA/D MOEA/D e-MOEA

5 e-MOEA e-MOEA NSGA-III

direction vectors to be closest to the number of individuals in
the approximate fronts. As a result, the number of direction
vectors is chosen to be 126 in 5-D problems and 55 in 10-D
problems. On each benchmark problem, each algorithm runs
30 times independently to examine the robustness of the
three performance metrics. Note that IGD and hypervolume
are commonly chosen in this paper to compare the MaOEAs
at hand.

Meanwhile, each of Figs. 22-35 shows visualization of the
approximate fronts generated by all five MaOEAs on the same
mapped 2-D polar plot for visual comparison. In each figure
(for the 5-D or 10-D DTLZ1-DTLZ7), “red line” represents
the true Pareto front, “blue circle” is the approximate front
by GrEA, “black star” represents ¢e-MOEA, “yellow square”
refers to NSGA-III, “purple diamond” is MOEA/D, while
“cyan hexagram” corresponds to HypE. In each figure, under
the same DTLZ problem, the mapped 5-D true Pareto front
is the same as the mapped 10-D true Pareto front. For exam-
ple, the true Parent front of 5-D DTLZI in Fig. 22 is the same
as that of 10-D DTLZI1 in Fig. 23. They appear differently
because the scales are different to allow the best visualiza-
tion of the approximate fronts generated by all five competing
MaOEAs.

TABLE IIT
PERFORMANCE OF MaOEAs ON 10-D PROBLEMS

MaOP | Rank p-metric IGD S-metric
DTLZ1 1 GreEA GreA GreA
2 MOEA/D HypE HypE
3 HypE NSGA-IIl | MOEA/D
4 NSGA-III MOEA/D | NSGA-III
5 e-MOEA e-MOEA e-MOEA
DTLZ2 1 GreEA GreEA MOEA/D
2 e-MOEA NSGA-III HypE
3 HypE e-MOEA NSGA-III
4 NSGA-III MOEA/D GreEA
5 MOEA/D HypE e-MOEA
DTLZ3 1 GreEA GreEA GreEA
2 MOEA/D HypE HypE
3 HypE MOEA/D | MOEA/D
4 e-MOEA e-MOEA e-MOEA
5 NSGA-III NSGA-IIl | NSGA-III
DTLZ4 1 GrEA e-MOEA MOEA/D
2 e-MOEA GreEA HypE
3 NSGA-III NSGA-IIl | NSGA-III
4 HypE HypE GrEA
5 MOEA/D MOEA/D e-MOEA
DTLZ5 1 HypE HypE NSGA-III
2 NSGA-III e-MOEA HypE
3 GrEA NSGA-III e-MOEA
4 e-MOEA GreEA MOEA/D
5 MOEA/D MOEA/D GrEA
DTLZ6 1 NSGA-III NSGA-III HypE
2 HypE MOEA/D | MOEA/D
3 MOEA/D HypE NSGA-III
4 e-MOEA GreEA GreEA
5 GrEA e-MOEA e-MOEA
DTLZ7 1 HypE GreEA HypE
2 GreEA HypE GreEA
3 e-MOEA e-MOEA e-MOEA
4 MOEA/D MOEA/D | MOEA/D
5 NSGA-III NSGA-IIl | NSGA-IlI

... AR FRGRES R, SIS %ol U RO -

Fig. 22. 5-D DTLZI.

E. Observation and Insight

In 5-D DTLZ1, MOEA/D contains the second best perfor-
mance among all algorithms under both IGD and S-metric.
However, Fig. 22 shows that MOEA/D generates an approx-
imate front (labeled in purple diamond) with all solutions
locating at only one portion of the objective space covered by
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Fig. 23. 10-D DTLZI1.

approximate front of GrEA (blue circle). As validated in [35],
MOEA/D is not penalized by its poor diversity under IGD
and S-metric. On the other hand, p-metric assigns MOEA/D
a second worst rank, which properly reflects its poor diversity
performance.

In 10-D DTLZI, from Fig. 23, the approximate fronts
obtained by HypE (cyan) and NSGA-III (yellow) are much
further away from the true Pareto front. Meanwhile, both of
them have poor diversity and they are only located at very few
numbers of directions. However, the score of both IGD and
S-metric cannot faithfully reflect these poor convergence and
diversity.

In both 5-D and 10-D DTLZ1 which present a linear
Pareto front and contain a large number of local fronts [36],
GrEA provides the best performance while e-MOEA per-
forms the worst. As we know, both convergence and diversity
power of GrEA come from its grid-based design. On the
other hand, the convergence power of e-MOEA is based on
Pareto-dominance modification (i.e., e-dominance) while its
diversity power comes by restricting each hyperbox with at
most a single solution, which is similar to diversity preserving
mechanism in a grid-based design. Therefore, it appears that
grid-based method for diversity performance better matches
with grid-based method for convergence performance than
with Pareto-dominance modification method for convergence
performance.

In 5-D DTLZ2, IGD metric shows that e-MOEA and
MOEA/D perform better than NSGA-III and HypE, respec-
tively. However, in Fig. 24, e-MOEA (black) has similar diver-
sity performance but slightly worse convergence performance
than NSGA-III (yellow), while MOEA/D (purple) shows sim-
ilar convergence performance but worse diversity performance
than HypE (cyan). Meanwhile, GrEA contains worse S-metric
score than those of NSGA-III, MOEA/D, and HypE. However,
Fig. 24 shows that GrEA (blue) indeed performs better in both
convergence and diversity than those three.

In 10-D DTLZ2, IGD metric assigns very different rank
values for NSGA-III and HypE. However, the approximate
fronts generated by both are very close in Fig. 25. On S-metric,
NSGA-III receives a better rank than GrEA which is in conflict
with the visualization result shown in Fig. 25.
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DTLZ3 also introduces a large number of local Pareto
fronts [36]. Again, GrEA shows its best performance in both
5-D and 10-D problems, while e-MOEA has an inferior
performance. Therefore, it supports our observation from
DTLZ1 that grid-based design for diversity performance
better matches with grid-based design for convergence per-
formance than Pareto-dominance modification method for
convergence performance. Furthermore, in Figs. 26 and 27,
it is easy to observe that HypE (cyan), e-MOEA (black), and
NSGA-III (yellow) can only converge to several different local
Pareto fronts.

In 5-D DTLZ4, MOEA/D and HypE have better perfor-
mance under S-metric. However, Fig. 28 shows that both
algorithms generate the approximate fronts with very poor
diversity. Furthermore, their convergence performance is also
worse than that of GrEA.

In 10-D DTLZ4, ¢-MOEA (black) obtains a better rank
under IGD than GrEA. However, from Fig. 29, both algo-
rithms generate the approximate fronts with similar diversity
performance, while GrEA (blue) achieves a better conver-
gence performance than e-MOEA. Under S-metric, NSGA-III
(yellow), MOEA/D (purple), and HypE (cyan) receive bet-
ter scores than that of GrEA. However, Fig. 29 shows that
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Fig. 26.

Fig. 27. 10-D DTLZ3.
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GrEA performs indeed better than them in both convergence
and diversity.

From [28], DTLZ4 generates a nonuniform distribution of
solutions along the Pareto front. GrEA with its best rank
result shows that the grid-based design with the same grid
length in each dimension is still effective in solving problems

Fig. 29.

Fig. 30.

Fig. 31.

10-D DTLZS.

with nonuniform distribution of the Pareto front, which is also
implied by experiment results in [31].

In 10-D DTLZS5, IGD metric shows that e-MOEA is better
than NSGA-III. However, we can draw an opposite conclu-
sion from Fig. 31. In DTLZS, the Pareto front is a degen-
erated hypersurface [36]. The diversity-emphasis method,
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Fig. 33. 10-D DTLZ6.

NSGA-III (yellow), and indicator-based method, HypE (cyan),
show better performance than others. Here, GrEA (blue) per-
forms much worse than itself in other problems. It seems
that grid-based design has difficulties handling problems with
degenerated hypersurface. Meanwhile, Figs. 30 and 31 imply
that all MaOEAs chosen cannot attain both well convergence
and diversity performance in DTLZS.

From [31], DTLZ6 has a large number of local Pareto fronts
and disconnected Pareto-optimal regions. Again, the difficulty
of e-MOEA in handling lots of local Pareto fronts results into
a poor performance in DTLZ6. Although GrEA has shown
its ability in dealing with lots of local fronts in DTLZI,
it displays a poor performance in 10-D problem. Therefore,
the disconnected Pareto-optimal regions plus high-dimensional
space make it difficult for grid-based method to achieve a well
converged and diversified approximate front. Meanwhile, in
Fig. 32, it is easy to observe that a lot of approximate
solutions generated by GrEA (blue), MOEA/D (purple), and
NSGA-III (yellow) converge to several local Pareto fronts.

DTLZ7 is constructed with the constrained surface
approach [36]. The Pareto front of DTLZ7 is the inter-
section of a straight line and a hyperplane. Results in
Figs. 34 and 35 support the observation from [36]: the tested

__________________________

_____________________________________________

10-D DTLZ7.

Fig. 35.

MaOEAs may find it difficult to converge to the Pareto front
and to maintain a good distribution of solutions along it.
However, performance metric alone cannot reflect this obser-
vation results and validate this detection. Visualization method
allows us to observe both convergence and diversity perfor-
mances.

In addition to discussions in Section III-B, these obser-
vations confirm that both IGD and S-metric cannot provide
a comprehensive and accurate comparison among MaOEAs
in a MaOP. The newly proposed metric, p-metric on the
other hand, can be an effective alternative to draw a fair
assessment.

V. CONCLUSION

In a high-dimensional objective space, visualization presents
an essential tool in developing MaOEAs and in solving
MaOPs. A new visualization approach is proposed herein.
It maps individuals from a high-dimensional objective space
into a 2-D polar coordinate system while preserving Pareto
dominance relationship, retaining shape and location of Pareto
front, and maintaining distribution of them.
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From the resulted polar plot, a decision-maker can observe
the evolution process, estimate location, range, and distribu-
tion of Pareto front, assess quality of the approximate front
and tradeoff between objectives, and easily select preferred
solutions. Furthermore, its applications can be scalable to any
dimensions, handle a large number of individuals on front, and
simultaneously visualize multiple fronts for comparison. Based
on this visualization method, a performance metric, named
p-metric, is proposed. The convergence of the approximate
front is measured by radial values of all population mem-
bers on that front. Meanwhile, the diversity performance of
the approximate front is mainly determined by niche count
of each subregion in a high-dimensional space. Experimental
results show that it can provide a comprehensive and consistent
comparison among MaOEAs.

In future work, we would like to extend the idea of visual-
ization and performance metric to constrained MaOPs because
most real-world problems involve constraints and dynamic
character. For the obtained approximate front to be usable, all
constraints must be satisfied. In this paper, many efforts have
been devoted to constrained [33]-[35] and dynamic [36]-[38]
problems. However, there is little publications that refer
to the high-dimensional constrained and dynamic problems.
Therefore, the idea of constraint satisfaction should be incor-
porated in MaOP. First, the mapping process in visualization
method preserves not only Pareto dominance relationship
and local distances among solutions in high-dimensional
spaces, but also the degree of how each solution satisfies the
constraints [39]-[44]. Then, the performance metric score of
each solution should be based on the fusion of its convergence
and diversity measures, and also constraint satisfying degree.
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