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In traditional TOPSIS method, the ideal solutions for alternatives are expressed in vectors. An important
step in the process of group decision making is to determine the relative importance of each decision
maker. In this paper, the weights of decision makers derived from individual decision are determined
by using an extended TOPSIS method with interval numbers. The ideal decisions for all individual deci-
sions are expressed in matrices. The positive ideal decision is the intersection of all individual decisions;
the negative ideal decision is the union of all individual decisions. Comparisons with other methods are
also made. A numerical example is examined to show the potential applications of the proposed method.
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1. Introduction

Decision making is the process of finding the best option from
all of the feasible alternatives. The increasing complexity of the
socio-economic environment makes it less and less possible for a
single decision maker (DM) to consider all relevant aspects of a
problem (Kim & Ahn, 1999). As a result, many decision making
processes, in the real world, take place in group settings.

To determine the weights of every DMs is a very important step
in multiple attribute group decision making (MAGDM) (Yue, Jia, &
Ye, 2009; Yue, 2011b, c). There are many applications, which neces-
sitate different weights (Ramanathan & Ganesh, 1994) because a
DM cannot be expected to have sufficient expertise to comment
on all aspects of the problem but on a part of the problem for which
he/she is competent (Weiss & Rao, 1987). In this paper, we suppose
that the weights of DMs are different and unknown. How to measure
the weights of DMs? Up to now, many methods have been devel-
oped. French Jr (1956) proposed a method to determine the relative
importance of the group’s members by using the influence relations,
which may exist between the members. Theil (1963) proposed a
method based on the correlation concepts when the member’s
inefficacy is measurable. Keeney and Kirkwood (1975) and Keeney
(1976) suggested the use of the interpersonal comparison to
determine the scales constant values in an additive and weighted
social choice function. Bodily (1979) and Mirkin and Fishburn
(1979) proposed two approaches which use the eigenvectors
method to determine the relative importance of the group’s
members. Brock (1980) used a Nash bargaining based approach to
estimate the weights of group members intrinsically. Ramanathan
ll rights reserved.
and Ganesh (1994) proposed a simple and intuitively appealing
eigenvector based method to intrinsically determine the weights
of group members using their own subjective opinions. Van den
Honert (2001) used the REMBRANDT system (multiplicative AHP
and associated SMART model) to quantify the decisional power
vested in each member of a group, based on subjective assessments
by other group members. Jabeur and Martel (2002) proposed a
procedure which exploits the idea of Zeleny (1982) to determine
the relative importance coefficient of each member. Jabeur, Martel,
and Khelifa (2004) proposed a distance-based collective preorder
integrating the relative importance of the group’s members. By
using the deviation measures between additive linguistic prefer-
ence relations, Xu (2008b) gave some straightforward formulas to
determine the weights of DMs. Chen and Fan (2006, 2007) studied
a method for the ranking of experts according to their levels in group
decision. Recently, Yue (2011a) presented an approach for group
decision making based on determining weights of DMs using
TOPSIS (technique for order preference by similarity to an ideal
solution) (Hwang & Yoon, 1981). And please refer to Yue
(2011d,e, f) for some related research method.

The above methods have numerous advantages, however, most
of the performance rating is quantified as crisp values. Under many
circumstances, crisp data are inadequate to model real-life situa-
tions. Since human judgments including preferences are often
uncertain, it is difficult to rate them as exact numerical values. In
addition, in case of conflicting situations or attribute, a DM must
also consider imprecise or uncertain data, which is very usual in
this type of decision problems. A more realistic approach may be
to use interval data instead of crisp values, that is, to suppose that
the ratings of the attributes in the problem are assessed by means
of interval data. In this paper, we will present a new TOPSIS
method with interval data for MAGDM problems.

http://dx.doi.org/10.1016/j.eswa.2011.12.016
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http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa
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The remaining paper is organized as follows. In Section 2, the
concepts of interval number are presented and discussed, includ-
ing the operations of interval numbers. Based on the concepts in
Section 2, the proposed approach for determining the weights of
DMs using an extended TOPSIS is shown in Section 3. Section 4
compares the proposed method with other methods. Then, an
illustrative example is used to demonstrate the feasibility and
practicability of the proposed method in Section 5. Finally, Sec-
tion 6 concludes this paper.

2. Interval numbers and their operation

As aforementioned, in some cases, determining the exact deci-
sion information is difficult and, as a result, the obtained informa-
tion from real world is always uncertain or incomplete. Hence,
extending the applications from precise number to interval num-
bers is necessary for real-world applications.

We describe the basic definitions and operations of interval
number as follows.

Definition 1 (Xu, 2008a; Zhang, Wu, and Olson, 2005). . Let
a = [al,au] = {xj0 < al

6 x 6 au}, then a is called a nonnegative inter-
val number. Especially, a is a nonnegative real number, if al = au.

Note: For convenience of computation, throughout this paper,
all the interval arguments are nonnegative interval numbers, and
let X be the set of all interval arguments, M = {1,2, . . . , m},
N = {1,2, . . . n} and T = {1,2, . . . t}; i 2M, j 2 N, and k 2 T.

Definition 2 (Xu, 2005, 2008a). Let a = [al,au], b = [bl,bu] are inter-
val numbers and k P 0, then

(1) a = b if and only if al = bl and au = bu;
(2) a + b = [al,au] + [bl,bu] = [al + bl,au + bu];
(3) ka = k[al,au] = [kal,kau]. Especially, ka = 0 if k = 0.

In order to aggregate interval numbers, we introduce the fol-
lowing weighted averaging operator (Harsanyi, 1955; Hwang &
Yoon, 1981):

Definition 3. Let aj ¼ al
j; a

u
j

h i
2 Qðj 2 NÞ, a weighted averaging

operator of {ajjj 2 N} is a mapping WA : Xn ? X such that

WAða1; a2; . . . ; anÞ ¼
Xn

j¼1

wjaj; ð1Þ

where w = (w1,w2, . . . ,wn)T is the weight vector of {ajjj 2 N},
wj P 0(j 2 N) and Rn

j¼1wj ¼ 1.
We introduce the following formula in order to rank interval

numbers.
Definition 4 Xu, 2008a. . Let a = [al,au] 2X, b = [bl,bu] 2X,
la = au � al and lb = bu � bl, then the degree of possibility of a P b
is defined as

pða P bÞ ¼max 1�max
bu � al

la þ lb
;0

� �
; 0

� �
: ð2Þ

Moreover, we can get easily the following results (Xu, 2008a, 2005)
from Eq. (2):

Let a = [al,au] 2X, b = [bl,bu] 2X, then.

(1) 0 6 p(a P b) 6 1;
(2) p(a P b) = 1 if and only if bu

6 al;
(3) p(a P b) = 0 if and only if au

6 bl;
(4) pða P aÞ ¼ 1

2;
(5) p(a P b) + p(b P a) = 1.
To rank the interval arguments aj ¼ al
j; a

u
j

h i
2 Qðj 2 NÞ, we first

compare each ai ¼ al
i; a

u
i

� �
with all aj ¼ al

j; a
u
j

h i
ðj 2 NÞ by using Eq.

(2). For convenience, we let pij = p(ai P aj), and then construct a
complementary matrix (Xu, 2008a) as follows:

P ¼ ðpijÞn�n ð3Þ

where pij P 0; pij þ pji ¼ 1;pii ¼ 1
2 ; i; j ¼ 1;2; . . . ;n.

Summing all elements in each line of matrix P, we have

pi ¼
Xn

j¼1

pij; i ¼ 1;2; . . . ;n: ð4Þ

Then we can reorder the interval arguments aj ¼ al
j; a

u
j

h i
ðj 2 NÞ in

descending order in accordance with the values of pi(i 2M) (Xu,
2008a).

Definition 5. Let X = (aij)m�n be a matrix, where the elements aij

are interval numbers, then X is called an interval matrix.
Definition 6. Let a ¼ ½al; au� 2 X; b ¼ ½bl
; bu� 2 X; then

Dða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbl � alÞ2 þ ðbu � auÞ2

q
ð5Þ

is called the Euclidean distance between a and b.
Definition 7. Let a ¼ ½al; au� 2 X; b ¼ ½bl
; bu� 2 X; if a ¼ / or b ¼ /;

then we difine Dða; bÞ ¼ 0.
Definition 8. Let a ¼ ½al; au� 2 X; b ¼ ½bl
; bu�;2 X; then

a [ b ¼ ½minfal; blg;maxfau; bug� ð6Þ

is called the union of a and b.
Definition 9. Let a ¼ ½al; au� 2 X; b ¼ ½bl
; bu� 2 X, then

a \ b ¼ ½maxfal; blg;minfau; bug� ð7Þ

is called the intersection of a and b.
Theorem. Let a ¼ ½al; au� 2 X; b ¼ ½bl
; bu� 2 X; then a \ b ¼ / if and

only if maxfal; blg > minfau; bug.
Definition 10. Let X1 ¼ ðaijÞm�n and X2 ¼ ðbijÞm�n be two interval
matrices, where aij ¼ ½al

ij;au
ij�; bij ¼ ½bl

ij; b
u
ij�; then

DðX1;X2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

ðbl
ij � al

ijÞ
2 þ ðbu

ij � au
ijÞ

2

vuut ð8Þ

is called the Euclidean distance between X1 and X2.
3. An extended TOPSIS to determine weights of decision makers
with interval number

To aid in the elucidation of the proposed technique, in what fol-
lows, we first review the group decision making with interval
number.

3.1. Multiple attribute group decision making with interval data

Let A = {A1,A2, . . . Am}(m P 2) be a discrete set of m feasible
alternatives, U = {u1,u2, . . . un} be a finite set of attributes, w = (w1,
w2, . . . wn)T be the weight vector of attributes, with 0 6wj 6 1 andPn

j¼1wj ¼ 1. And let D = {d1, d2, . . . ,dt} be a group of DMs, and
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k = (k1,k2, . . . kt)T be the weight vector of DMs, where kk P 0,Pn
k¼1kk ¼ 1.
A MAGDM problem can be described in detail as follows:
Let

ð9Þ
be decision matrix of the kth (k 2 T) DM, in which each of the ele-
ments is characterized by interval number. In general, there are
benefit attributes and cost attributes in the multiple attribute deci-
sion making problems. In order to measure all attributes in dimen-
sionless units and facilitate inter-attribute comparisons, we
introduce the following Eqs. (11) and (12) (Aghajani Bazzazi,
Osanloo, & Karimi, 2011) to normalize each attribute value

xkl
ij ; x

ku
ij

h i
in decision matrix Xk ¼ xkl

ij ; x
ku
ij

h i	 

m�n

into a corresponding

element ykl
ij ; y

ku
ij

h i
in normalized decision matrix Yk ¼ ykl

ij ; y
ku
ij

h i	 

m�n

given by Eq. (10).

ð10Þ

where

ykl
ij ¼

xkl
ij

max
i2M
fxku

ij
g

yku
ij ¼

xku
ij

max
i2M
fxku

ij
g

8>><
>>:

; for benefit attribute uj; i 2 M; j 2 N; k 2 T;

ð11Þ
and

ykl
ij ¼

min
i2M
fxkl

ij
g

xku
ij

yku
ij ¼

min
i2M
fxkl

ij
g

xkl
ij

8>><
>>:

; for cost attribute uj; i 2 M; j 2 N; k 2 T:

ð12Þ

Obviously, the normalization method mentioned above is to pre-
serve the characteristic that the ranges of normalized interval val-
ues belong to [0,1].

3.2. An extended TOPSIS method with interval number

Suppose that wk ¼ ðwk
1;w

k
2; . . . ;wk

nÞ
T is the weight vector of attri-

butes, with 0 6 wk
j 6 1 and

Pn
j¼1wk

j ¼ 1, which is provided by kth
DM. For the normalized decision matrix Yk of kth DM mentioned
above, we can construct the weighted normalized decision matrix,
multiplying each element of the decision matrix Yk, by the weights
wj of the corresponding attribute, i.e.,

Rk ¼ rkl
ij ;vku

ij

h i	 

m�n
¼ wk

j ykl
ij ;wjyku

ij

h i	 

m�n

¼

A1

A2

..

.

Am

rkl
11;r

ku
11

� �
rkl

12;r
ku
12

� �
� � � rkl

1n;r
ku
1n

� �
rkl

21;r
ku
21

� �
rkl

22;r
ku
22

� �
� � � rkl

2n;r
ku
2n

� �
..
. ..

. ..
. ..

.

rkl
m1;r

ku
m1

� �
rkl

m2;r
ku
m2

� �
� � � rkl

mn;r
ku
mn

� �

0
BBBBB@

1
CCCCCA

u1 u2 � � � un

; for all k2 T: ð13Þ
Based on the weighted normalized decision matrix Rk(k 2 T), we can
consider further to determine the ideal decisions of group below.

The ideal decision should reflect the common decision aspira-
tions and consistent judgments. So we define

Rþ ¼ rþl
ij ; r

þu
ij

h i	 

m�n

; i 2 M; j 2 N; ð14Þ

as the positive ideal decision (PID) of group, where
½rþl

ij ; r
þu
ij � ¼

Tt
k¼1½rkl

ij ; r
ku
ij �ði 2 M; j 2 NÞ

And the negative ideal decision (NID) of group should has the
maximum separation from the PID. So we define

R� ¼ r�l
ij ; r

�u
ij

h i	 

m�n

; i 2 M; j 2 N; ð15Þ

as the NID of all individual decisions, where r�l
ij ; r

�u
ij

h i
¼

St
k¼1 rkl

ij ; r
ku
ij

h i
ði 2 M; j 2 NÞ. In fact,

St
k¼1 rkl

ij ; r
ku
ij

h i
¼ mink2T rkl

ij

n o
;

h

maxk2T rku
ij

n o
�ði 2 M; j 2 NÞ.

The positive separation of each individual decision from the PID,
using the n-dimensional Euclidean distance, can be currently
calculated as

Sþk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

rkl
ij � rþl

ij

	 
2
þ rku

ij � rþu
ij

	 
2
� �vuut ; k 2 T: ð16Þ

Similarly, the negative separation from the NID is given as

S�k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1

rkl
ij � r�l

ij

	 
2
þ rku

ij � r�u
ij

	 
2
� �vuut ; k 2 T: ð17Þ

The next step combines the two separation measures Sþk and S�k in
order to obtain the relative closeness. The relative closeness of
each individual decision with respect to ideal decisions is
defined as

Ck ¼
S�k

Sþk þ S�k
; k 2 T: ð18Þ

Since S�k P 0 and Sþk P 0, clearly, the range of Ck belongs to the
closed interval [0,1] for all k 2 T.

Obviously, a decision matrix Rk is closer to the A+ and farther
from A� as Rk approaches to 1. Therefore, according to the relative
closeness, we can determine the ranking order of all DMs and se-
lect the best one from among a set of DMs.

So, we can define

kk ¼
CkPt
k¼1Ck

; k 2 T; ð19Þ

as weight of kth (k 2 T) DM, such that kk P 0;
Pt

k¼1kk ¼ 1.
Further, we can aggregate all individual decisions Rk(k 2 T) into

a collective decision R once the DMs’ weight vector
k = (k1,k2, . . . kt)T has been determined by using Eq. (19).

R ¼
Xt

k¼1

kkRk ¼ rl
ij; r

u
ij

h i	 

m�n

: ð20Þ

Then, we can sum all intervals in each line of the collective decision
R, the overall interval assessment of each alternative Ai(i 2M) is
obtained:

ri ¼ rl
i; r

u
i

� �
¼
Xn

j¼1

rl
ij; r

u
ij

h i
; i 2 M: ð21Þ
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Now, we can construct the complementary matrix P = (p(ri P rj))m�m=
(pij)m�m by Eq. (3). Then, summing all elements in each line of
matrix P by Eq. (4), we can reorder all ri(i 2M) in descending order
in accordance with the values of pi(i 2M). Finally, we can rank
alternatives Ai(i 2M) according to pi(i 2M) in descending order.

In sum, an algorithm for MAGDM based on determining the
weights of DMs, when data is interval number, using the extended
TOPSIS approach, is given in the following steps:

Step 1. Establish individual decision matrix.

Each DM dk provides his/her decision matrix Xk ¼ xk
ij

	 

m�n

on alternatives with respect to attributes (see Eq. (9)).
Step 2. Normalize the individual decision matrix.

Normalize the individual decision Xk ¼ xk
ij

	 

m�n

into

Yk ¼ yk
ij

	 

m�n

in Eq. (10) by using Eqs. (11) and/or (12).

Step 3. Calculate weighted normalized decision matrix.
First, each DM dk provides his/her weight vector

Wk ¼ wk
1;w

k
2; . . . ;wk

n

� �T of the attributes. Then, the
weighted decision matrix Rk is constructed by Eq. (13).

Step 4. Determine ideal decisions.
The PID and NID of group are determined by Eqs. (14)
and (15), respectively.

Step 5. Calculate the separation measures between the individ-
ual decisions and the ideal decisions.
The positive and negative separation measures of each
individual decision from the PID R+ and NID R�, Sþk and
S�k , are calculated by Eqs. (16) and (17), respectively.

Step 6. Calculate the relative closeness of each individual deci-
sion.
A relative closeness combining the separation measures
of each individual decision and the ideal decisions is cal-
culated by using Eq. (18).

Step 7. Determine weight vector of DMs.
The weight vector k = (k1,k2, . . . ,kt)T of DMs is determined
by using Eq. (19).

Step 8. Aggregate the all individual decisions into a collective
decision.
A collective decision can be aggregated by using the
weight vector k = (k1,k2, . . . kt)T of DMs according to Eq.
(20).

Step 9. Calculate the overall evaluations of alternatives.
Summing all interval numbers in each line of the collec-
tive decision, a overall evaluation of each alternative Ai,
expressed in interval numbers, is obtained by using Eq.
(21).

Step 10. Construct the complementary matrix of overall evalua-
tions of alternatives.
A complementary matrix of overall evaluations of alter-
natives is constructed by Eq. (3).

Step 11. Rank the preference of alternatives.
Summing all elements in each line of the complementary
matrix, denoted as pi, shown in Eq. (4), then we can rank
the alternatives in descending order in accordance with
the values of pi.

The extended TOPSIS method to determine the weights of DMs
for MAGDM is presented graphically in Fig. 1.
4. Comparing the proposed approach with other methods

In this section we compare the extended TOPSIS method pro-
posed in this paper with other methods. The methods to be com-
pared here are the traditional TOPSIS method (Hwang & Yoon,
1981) and another extended TOPSIS method proposed by Lin,
Lee, Chang, and Ting (2008).

The traditional TOPSIS method is presented graphically in Fig. 2.
These are two ‘‘reference’’ points: positive ideal solution (PIS)

and negative ideal solution (NIS) introduced in the traditional TOP-
SIS method in order to rank alternatives. It is suitable for cautious
(risk avoider) DM (s), because the DM (s) might like to have a deci-
sion which not only makes as much profit as possible, but also
avoids as much risk as possible (Sayadi, Heydari, & Shahanaghi,
2009).

The traditional TOPSIS has solved some multiple attribute deci-
sion making problems with just one DM; whereas the extended
TOPSIS technique in this paper has solved some MAGDM problems
with multiple DMs. The weights of attributes are priori in the tra-
ditional TOPSIS method; whereas the weights of attributes in each
individual decision are given by DM. Two ‘‘reference’’ points: PIS
and NIS are vectors in the traditional TOPSIS method; whereas
two ‘‘reference’’ points: PID and NID are matrices in the extended
TOPSIS technique. PIS and NIS are ‘‘reference’’ points for all alterna-
tives in the traditional TOPSIS method; PID and NID are ‘reference’’
points for all individual decisions in the extended TOPSIS tech-



Table 1
Comparison with the traditional TOPSIS.

Characteristics Traditional TOPSIS Extended TOPSIS

No. of DMs One More than one
Weights on

attributes
Priori Given by DM

Cardinal
information

Alternatives with respect to attributes Alternatives with respect to attributes of multiple DMs

PIS/PID The best alternative expressed by a vector The consistent judgments expressed by a matrix
NIS/NID The worst alternative expressed by a vector The maximum separation from the PID expressed by a matrix
Core process The separations from each alternative to PIS and NIS (between

vectors)
The separations from each individual decision to PID and NID (between
matrices)

Final decision Ranking of a number of alternatives Ranking of a number of alternatives
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nique. The separation measures of each alternative from ideal solu-
tions is compared between vectors in the traditional TOPSIS meth-
od; The separation measures of each individual decision from ideal
decisions are compared between matrices in the extended TOPSIS
technique. These differences are presented in Table 1.

Lin et al. (2008) presented an approach for group decision mak-
ing using an extended TOPSIS with interval numbers. This is a sim-
Table 2
Comparison with the method proposed by Lin et al.

Characteristics Proposed by Lin et al.

Decision
information

Decision matrices

X1,X2, . . .Xt of alternatives with respect to attributes
No. of DMs t > 1
Weights on

attributes
Given by DM

PISs/PID The best alternative of each individual decision expressed by a
vector

NISs/NID The worst alternative of each individual decision expressed by
vector

No. of PIS/PID t > 1
No. of NIS/NID t > 1
Decision function The separations from each alternative to PIS and NIS (between

vectors)
Weights of DMs Priori
Final decision Ranking of a number of alternatives

Table 3
Four decision matrices and five attributes’ weights given by each DM.

DMs Candidates and weights Cost Tim

d1 A1 [10,12] [21
A2 [11,15] [24
A3 [12,13] [22
A4 [14,16] [18
Weights 0.22 0.1

d2 A1 [9,13] [24
A2 [11,12] [21
A3 [10,12] [22
A4 [15,16] [19
Weights 0.19 0.1

d3 A1 [11,13] [19
A2 [12,14] [18
A3 [12,15] [21
A4 [13,17] [18
Weights 0.21 0.1

d4 A1 [13,14] [22
A2 [13,15] [19
A3 [16,18] [20
A4 [15,17] [19
Weights 0.24 0.1
ilar methodology to this paper. These similarities and differences
between two methodologies are shown in Table 2.

Tables 1 and 2 show that the suggested methodology in this
paper extends the two ideal solutions expressed as a vector,
respectively, in the traditional TOPSIS method to two ideal deci-
sions expressed as a matrix, respectively; the weights of DMs are
priori in the traditional TOPSIS method to be extended to derive
from individual decision (measured data); ideal decisions are mac-
Proposed by this paper

Decision matrices

X1,X2, . . .Xt of alternatives with respect to attributes
t > 1
Given by DM

The consistent judgment of all individual decisions expressed by a matrix

a The union of all individual decision expressed by a matrix

One
One
The separations from each individual decision to PID and NID (between
matrices)
Derived from individual decision
Ranking of a number of alternatives

e Trust Risk Quality

,25] [80,84] [0.95,0.98] [0.95,0.96]
,25] [84,85] [0.92,0.93] [0.96,0.97]
,24] [87,89] [0.88,0.91] [0.96,0.97]
,20] [91,93] [0.89,0.90] [0.99,1.00]
7 0.25 0.15 0.21
,25] [79,82] [0.93,0.94] [0.96,0.98]
,23] [83,84] [0.92,0.94] [0.97,0.98]
,23] [88,89] [0.89,0.91] [0.98,0.99]
,20] [89,92] [0.90, 0.92] [0.99,1.00]
8 0.22 0.16 0.25
,22] [74,78] [0.96,0.97] [0.93,0.96]
,25] [76,80] [0.93,0.96] [0.94,0.96]
,22] [82,85] [0.90, 0.92] [0.95,0.96]
,23] [86,88] [0.91,0.94] [0.97,0.98]
9 0.23 0.17 0.20
,23] [76,78] [0.95,0.96] [0.94,0.95]
,23] [81,82] [0.94,0.95] [0.93,0.94]
,22] [84,86] [0.89,0.92] [0.94,0.95]
,21] [87,88] [0.88,0.91] [0.95,0.96]
8 0.21 0.18 0.19



Table 4
Normalized decision matrices.

DMs Candidates Cost Time Trust Risk Quality

d1 A1 [0.63,0.75] [0.84,1.00] [0.95,1.00] [0.97,1.00] [0.99,1.00]]
A2 [0.69,0.94] [0.96,1.00] [0.94,0.95] [0.94,0.95] [0.98,0.99]
A3 [0.75,0.81] [0.88,0.96] [0.90,0.92] [0.90,0.93] [0.98,0.99]
A4 [0.88,1.00] [0.72,0.80] [0.86,0.88] [0.91,0.92] [0.95,0.96]

d2 A1 [0.56,0.81] [0.96,1.00] [0.96,1.00] [0.99,1.00] [0.98,1.00]
A2 [0.69,0.75] [0.84,0.92] [0.94,0.95] [0.98,1.00] [0.98,0.99]
A3 [0.63,0.75] [0.88,0.92] [0.89,0.90] [0.95,0.97] [0.97,0.98]
A4 [0.94,1.00] [0.76,0.80] [0.86,0.89] [0.96,0.98] [0.96,0.97]

d3 A1 [0.65,0.76] [0.76,0.88] [0.95,1.00] [0.99,1.00] [0.97,1.00]
A2 [0.71,0.82] [0.72,1.00] [0.93,0.97] [0.96,0.99] [0.97,0.99]
A3 [0.71,0.88] [0.84,0.88] [0.87,0.90] [0.93,0.95] [0.97,0.98]
A4 [0.76,1.00] [0.72,0.92] [0.84,0.86] [0.94,0.97] [0.95,0.96]

d4 A1 [0.72,0.78] [0.96,1.00] [0.97,1.00] [0.99,1.00] [0.98,0.99]
A2 [0.72,0.83] [0.83,1.00] [0.93,0.94] [0.98,0.99] [0.99,1.00]
A3 [0.89,1.00] [0.87,0.96] [0.88,0.90] [0.93,0.96] [0.98,0.99]
A4 [0.83,0.94] [0.83,0.91] [0.86,0.87] [0.92,0.95] [0.97,0.98]

Table 5
Weighted normalized decision matrices.

DMs Candidates Cost Time Trust Risk Quality

d1 A1 [0.1375, 0.1650] [0.1428,0.1700] [0.2381,0.2500] [0.1454,0.1500] [0.2078,0.2100]
A2 [0.1513, 0.2062] [0.1632,0.1700] [0.2353,0.2381] [0.1408,0.1423] [0.2057,0.2078]
A3 [0.1650,0.1787] [0.1496,0.1632] [0.2247,0.2299] [0.1347,0.1393] [0.2057,0.2078]
A4 [0.1925, 0.2200] [0.1224,0.1360] [0.2151,0.2198] [0.1362,0.1378] [0.1995,0.2015]

d2 A1 [0.1069,0.1544] [0.1728,0.1800] [0.2120,0.2200] [0.1583,0.1600] [0.2449,0.2500]
A2 [0.1306,0.1425] [0.1512,0.1656] [0.2069,0.2094] [0.1566,0.1600] [0.2449,0.2474]
A3 [0.1187, 0.1425] [0.1584,0.1656] [0.1953,0.1975] [0.1515,0.1549] [0.2424,0.2449]
A4 [0.1781, 0.1900] [0.1368,0.1440] [0.1889,0.1953] [0.1532,0.1566] [0.2400,0.2424]

d3 A1 [0.1359, 0.1606] [0.1444,0.1672] [0.2182,0.2300] [0.1682,0.1700] [0.1938,0.2000]
A2 [0.1482, 0.1729] [0.1368,0.1900] [0.2128,0.2239] [0.1630,0.1682] [0.1938,0.1979]
A3 [0.1482, 0.1853] [0.1596,0.1672] [0.2002,0.2076] [0.1577,0.1612] [0.1938,0.1958]
A4 [0.1606,0.2100] [0.1368,0.1748] [0.1934,0.1979] [0.1595,0.1647] [0.1898,0.1918]

d4 A1 [0.1733, 0.1867] [0.1722,0.1800] [0.2046,0.2100] [0.1781,0.1800] [0.1860,0.1880]
A2 [0.1733, 0.2000] [0.1487,0.1800] [0.1946,0.1970] [0.1762,0.1781] [0.1880,0.1900]
A3 [0.2133, 0.2400] [0.1565,0.1722] [0.1856,0.1900] [0.1669,0.1725] [0.1860,0.1880]
A4 [0.2000,0.2267] [0.1487,0.1643] [0.1814,0.1834] [0.1650,0.1706] [0.1841,0.1860]

Table 6
Ideal decision (ID) matrices.

IDs Candidates Cost Time Trust Risk Quality

PID A1 [0.1544,0.1733] [0.1672,0.1728] [0.2100,0.2381] [0.1500,0.1781] [0.1880,0.2449]
A2 [0.1425,0.1733] U [0.1970,0.2353] [0.1423,0.1762] [0.1900,0.2449]
A3 [0.1425,0.2133] U [0.1900,0.2247] [0.1393,0.1669] [0.1880,0.2424]
A4 [0.1900,0.2000] [0.1360,0.1487] [0.1834,0.2151] [0.1378,0.1650] [0.1860,0.2400]

NID A1 [0.1069,0.1867] [0.1428,0.1800] [0.2046,0.2500] [0.1454,0.1800] [0.1860,0.2500]
A2 [0.1306,0.2062] [0.1368,0.1900] [0.1946,0.2381] [0.1408,0.1781] [0.1880,0.2474]
A3 [0.1187,0.2400] [0.1496,0.1722] [0.1856,0.2299] [0.1347,0.1725] [0.1860,0.2449]
A4 [0.1606,0.2267] [0.1224,0.1748] [0.1814,0.2198] [0.1362,0.1706] [0.1841,0.2424]

Table 7
Separation measures between individual decisions and ideal decisions.

Ideal decisions R1 R2 R3 R4

PID 0.1383 0.1599 0.1242 0.1715
NID 0.1703 0.1955 0.1503 0.2066
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roscopic instead of local and microscopic, global instead of individ-
ual in the traditional TOPSIS method; ideal decisions are high
dimension expressed as matrixes in suggested methodology in this
paper instead of ideal solutions in low dimension expressed as vec-
tors in the traditional TOPSIS method.
Table 8
Relative closeness, weights and ranking of DMs.

DMs Relative closeness Weights Ranking

d1 0.5519 0.2513 1
d2 0.5501 0.2505 2
d3 0.5477 0.2494 3
d4 0.5465 0.2488 4
5. Numerical example

While fierce competition impels many of the commercial mar-
kets into a low-profit environment, virtual enterprise appears as
a business strategy for small and medium-sized enterprises to alley
together (Hsu & Hsu, 2008). A virtual enterprise is a team com-
posed of several enterprises with different core competitions dri-
ven by some transient market opportunity.



Table 9
Collective decision matrix.

Candidates Cost Time Trust Risk Quality

A1 [0.1383,0.1666] [0.1580,0.1743] [0.2183,0.2275] [0.1625,0.1650] [0.2082,0.2120]
A2 [0.1508,0.1804] [0.1500,0.1764] [0.2124,0.2172] [0.1591,0.1621] [0.2081,0.2108]
A3 [0.1613,0.1865] [0.1560,0.1670] [0.2015,0.2063] [0.1527,0.1569] [0.2070,0.2092]
A4 [0.1828,0.2117] [0.1361,0.1547] [0.1947,0.1991] [0.1534,0.1574] [0.2034,0.2055]
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Recently, Ministry of Transport of the People’s Republic of China
has taken a huge project in road construction. A core enterprise,
which is one of the Chinese construction companies, catches this
market opportunity. However, it does not own all the competen-
cies and resources needed to realize the market opportunity. That
is to say, to support the operations of a virtual enterprise, the part-
ners selection is required. In order to illustrate the proposed meth-
od introduced above, in the following, we utilize the proposed
method to deal with the partners selection problem faced by this
core enterprise.

There are five main attributes including cost, time, trust, risk
and quality in this process of the partners selection. Cost, time
and risk are cost type, while trust and quality are benefit type.
There are four partners who have been identified as candidates/
alternatives, and four DMs are responsible for the partner selection
problem. The objective here is to select a partner, which can satisfy
all attributes in the best way. Each DM provides his/her decision
matrix and weights of the attributes as shown in Table 3.

By Step 2, we can normalize four individual decisions in Table 3,
respectively, as shown in Table 4.

Next, for the attributes’ weights given by DMs, we can construct
further weighted normalized decision matrix according to Step 3,
which are shown in Table 5.

In the following we shall start to determine the weights of DMs
according to individual decision. Firstly, the positive and negative
ideal decisions of group are determined by Step 4, which are
shown in Table 6. Secondly, we utilize Eqs. (16) and (17) to derive
the positive and negative separations, respectively, according to
Step 5, which are shown in Table 7. Then, the relative closeness
of each individual decision and weight vector of DMs are deter-
mined by Steps 6 and 7, respectively, these result are summarized
in Table 8.

After determining weights of DMs, the next is ranking the alter-
natives (or candidates). Firstly, we can aggregate the all individual
decisions into a collective decision by using the weights of DMs
according to Step 8, the collective decision are shown in Table 9.
Secondly, by Step 9, summing all interval arguments in each line
of Table 9, the overall interval assessments of alternatives
Ai(i = 1,2,3,4) are obtained:

r1 ¼ ½0:8853;0:9455�; r2 ¼ ½0:8805;0:9469�;
r3 ¼ ½0:8785;0:9260�; r4 ¼ ½0:8705; 0:9284�:

To get the order of these overall interval arguments ri(i = 1,2,3,4),
by Step 10, we first compare each argument ri with all arguments
rj(j = 1,2,3,4) by using Eq. (2). Then we can construct a complemen-
tary matrix by Eq. (3) as follows:

P ¼

0:5000 0:5131 0:6222 0:6349
0:4869 0:5000 0:6010 0:6148
0:3778 0:3990 0:5000 0:5262
0:3651 0:3852 0:4738 0:5000

0
BBB@

1
CCCA:

Summing all elements in each line of matrix P by Eq. (4), we have:

p1 ¼ 2:2702; p2 ¼ 2:2027; p3 ¼ 1:8030; p4 ¼ 1:7241:

Then we can rank the arguments ri(i = 1,2, 3,4) in descending order
in accordance with the value of pi(i = 1,2,3,4):
r1 > r2 > r3 > r4:

In the end, by Step 11, all the candidates/alternatives Ai(i = 1,2,3,4)
can be ranked in accordance with ri(i = 1,2,3):

A1 � A2 � A3 � A4;

where the symbol ‘‘� ’’ means superior to. And thus, the best candi-
date is A1.
6. Conclusion

In this paper we have presented a new TOPSIS method with
interval data for MAGDM problems. We have extended the positive
and negative ideal solutions expressed as a vector, respectively, in
original TOPSIS method to positive and negative ideal decisions ex-
pressed as a matrix, respectively, in extended TOPSIS method in
this paper. So, this article has established an approach for deter-
mining the weights of DMs using the extended TOPSIS in group
settings. The proposed method is clear in concept, simple in com-
putation and able to be performed on computer easily. The devel-
oped methodology should be extended to support situations where
the information is in other forms, e.g., fuzzy numbers, intuitionistic
fuzzy numbers, interval-valued intuitionistic fuzzy numbers and
linguistic variables.
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