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a b s t r a c t

In today’s competitive environment, agility and leanness have become two crucial strategic concerns for
many manufacturing firms in their efforts to broaden market share. Recently, the build-to-order (BTO)
manufacturing strategy is becoming a popular operation strategy to achieve both in a mass-scale custom-
ization process. BTO system combines the characteristics of make-to-order strategy with a forecast driven
make-to-stock strategy. As a means to improve customer responsiveness, customized products are
assembled according to specific orders while standard components are pre-manufactured based on
short-term forecasts. Planning of the two subsystems using a two-phase sequential approach offers both
operational and modeling incentives. In this paper, we formulate a two-phase mixed integer linear pro-
gramming (MILP) model for material procurement, components fabrication, product assembly and distri-
bution scheduling of a BTO supply chain system. In the proposed approach, the entire problem is first
decomposed into two subsystems and evaluated sequentially. The first phase deals with assembling
and distribution scheduling of customizable products, while the second phase addresses fabrication
and procurement planning of components and raw-materials. The objective of both models is to mini-
mize the aggregate costs associated with each subsystem, while meeting customer service requirements.
The search space for the first phase problem involves a complex landscape with too many candidate solu-
tions. A genetic algorithm based solution procedure is proposed to solve the sub-problem efficiently.

� 2010 Published by Elsevier Ltd.
1. Introduction cost effective. Customer’s input in BTO manufacturing environ-
The build-to-order (BTO) manufacturing system is a pull system
in which materials are pulled downstream of the supply chain dri-
ven by customer orders. It basically incorporates the characteris-
tics of both lean and agile manufacturing strategies. Unlike the
traditional make to stock supply chain, BTO strategy reduces the
dependency of the system on demand forecasts, hence diminishing
the requirement of high inventory buffers in the supply chain as
pointed out in Gunasekaran and Ngai (2005). BTO systems com-
bine the characteristics of both make-to-stock (forecast driven)
and make-to-order (demand driven) strategies. Standard compo-
nent parts and non-customizable subassemblies are acquired or
build in-house based on short-term forecasts, while schedules for
the few customizable parts and the final assembly are executed
after detailed product specifications have been derived from
booked customer orders, see Demirli and Yimer (2008).

Customization of products can only be achieved if there is some
form of postponent strategy either in the assembly state, assembly
area, delivery or at the design phase. As described by Li, Cheng, and
Wang (2007), postponent refers to delaying some product differen-
tiation or process as late as possible until the supply chain becomes
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ment would involve postponent in downstream decisions with
some speculation on the upstream manufacturing and supplies,
see Prasad, Tata, and Madan (2005). Manufacturing plants operat-
ing under BTO supply chain use one of the three form postponent
strategies in their functions: finished goods, work-in-process parts
and purchased items or raw-materials as shown in Krajewski, Wei,
and Tang (2005). Sharma and LaPlaca (2005) study the long-term
impact of adopting a BTO manufacturing system on the marketing
function and identify the marketing strategies used by successful
BTO companies. A BTO strategy positively affects market perfor-
mance through its influence on the supply chain application
knowledge downstream with customers, while a JIT strategy does
the upstream application with suppliers, see Christensen, Germain,
and Birou (2005).

If we consider the upholstered furniture business, it is charac-
terized by a wide range of product styles and a diversified cus-
tomer demand. A variety of basic frame styles, fabrics, colors and
other special options would generate a wide range of custom-built
products. Therefore, a lean production system along with an agile
strategy must be implemented to keep the units moving through
the plant and to the customer smoothly as shown in Lyons,
Coronado-Mondragon, and Kehoe (2004). As a result, firms such
as Pella, Herman Miller and Norwalk have shifted to a BTO manu-
facturing strategy and assemble different customized products, see
Gunasekaran and Ngai (2005), Sharma and LaPlaca (2005), Yao and
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Nomenclature

Sets and indices
Xf set of component fabricating plants
Xa set of assembling plants
Xd set of distribution centers
Xr set of product retailers (dealers)
i product type index, i ¼ 1;2; � � � ; I,
j component part or subassembly index, j ¼ 1;2; � � � ; J,
l raw-material index, l ¼ 1;2; � � � ; L,
t period index, t ¼ 1;2; � � � ; T ,
k fabrication plant index, k 2 Xf ,
p assembly plant index, p 2 Xa,
q distribution center index, q 2 Xd,
r retailer index, r 2 Xr ,

Input parameters
wkpj 1 if k supplies p with component j; or 0 otherwise
vpq 1 if p can supply to q with products; or 0 otherwise
vqr 1 if q can deliver products to r; or 0 otherwise
qkl holding cost of raw-material l by fabricator k
skl order setup cost of raw-material l by fabricator k
gkl unit purchasing cost of r.m. l by fabricator k
rkpj fixed cost of p to acquire j from fabricator k
#kpj unit variable cost of p to procure j from k
kpj holding cost of plant p per unit of part j
cpij unit customization cost of j in assembling i by p
cpi fixed cost of plant p to assemble i
bpi unit regular time assembling cost of i at plant p
xpi unit overtime assembling cost of i at plant p
hqi inventory holding cost per unit of i at distributor q
spqi unit transport cost of i from plant p to distributor q
sqri unit transport cost of i from distributor q to dealer r
ari setup cost of dealer r per order of product i
pri penalty cost of r per unit backordered of i
dlj proportion of r.m. l required per unit of part j
uij units of j required per unit of product type i
‘k expected raw-material procurement lead-time at k
‘pq transportation lead-time from p to q
‘qr delivery lead-time from q to r
‘r expected production–distribution lead-time at r
T planning horizon
M1 very big positive integer
Drit demand volume of i at r in period t; equal to Orit if t 6 ‘r;

or maxðOrit ; FritÞ otherwise,

SLmin min. customer service level requirement in % demand
MDCkpj capacity of k to supply p with component j per period
MRCpi regular time capacity of p to assemble product i per per-

iod
MOCpi overtime capacity of p to assemble product i per period
MLCkl capacity of k to stock r.m. l per period
MJCpj inventory capacity of plant p to carry part j
MICqi storage capacity of q to carry i per period
MTCpqi capacity of p to deliver q with product i
MTCqri capacity limit to ship i from q to r

Decision variables
DMklt demand volume of r.m. l by fabricator k in period t
DCpjt demand of component j by assembler p in period t
Fpjt anticipated demand for component j by p in period t
Lklt inventory level of r.m. l at the end of period t
Jpjt inventory status of j at the beginning of period t
Iqit on hand balance of product i at q in period t
Qinqit quantity of i delivered to q by all plants in period t
Qoutqit quantity of i shipped from q to all retailers in period t
QLklt scheduled receipt of r.m. l by k in period t
QCkpjt quantity of j procured by p from k in period t
QRpit regular time assembled volume of i in period t
QOpit overtime assembled volume of i in period t
QApit total volume of product i assembled in period t
QTpqit volume of i shipped from p to q in period t
QTqrit volume of i transported from q to r in period t
SLrit demand satisfaction level of i at retailer r in period t
QNrit quantity of i backordered by r in period t
Qrit quantity of i delivered to r in period t
ZRM aggregate raw-materials cost
ZCF aggregate components fabrication cost
ZAS aggregate products assembling cost
ZDC aggregate distribution cost
ZRT aggregate retailers cost
ZPD total cost of production and distribution (phase-1)
ZCR total cost of components and raw-materials(phase-2)
hklt 1 if k places order to procure l in period t, or 0 other-

wise;
/kpjt 1 if p procures part j from k in period t, or 0 otherwise;
apit 1 if p is setup to assemble i in period t, or 0 otherwise;
urit 1 if r places assembly order of i in period t, or 0 other-

wise;
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Carlson (2003). Agile manufacturing facility can cope with changes
in customer requirements including price, quality, customization,
and promised delivery dates as indicated by Christian and Zimmers
(1999). In most cases, furniture products consume large amounts
of space during production, storage and shipment. A lean produc-
tion system is thus important to curb large space requirements.
A lean furniture production system uses its skilled work force
and flexible handling equipment to quickly move small batch of
material units from one workstation to the next thereby minimiz-
ing WIP. To enhance both agility and leanness, constructing a rec-
ommended cluster of fabrics available in different styles and colors
would help limit the degree of customization.

The overwhelming majority of the literature in the area of sup-
ply chain modeling consider the traditional make-to-stock demand
satisfying strategy. Production–distribution planning and schedul-
ing is one important issue in multi-plant supply chain modeling.
Scheduling models in multi-stage supply chains usually involve
trade-offs among different conflicting objectives such as minimiza-
tion of overall operating cost and safe inventory levels, while max-
imizing customer service performance and total profit with fair
distribution among all partners, see Aghezzaf, Raa, and Landeghem
(2006), Ertogral, Darwish, and Ben-Daya (2006), Guillen, Badell,
and Puigjaner (2006), Neiro and Pinto (2004), Selvarajah and
Steiner (2005). LP models to minimize total tardiness or total
operation costs and considering capacity constraints, alternative
machines sequences, sequence-dependent setup, and distinct due
dates are also proposed in Ertogral et al. (2006), Liang (2006),
Moon, Kim, and Hur (2002), Spitter, Hurkens, Kok, Lenstra, and
Negenman (2005). Lakhal, Martel, Kettani, and Oral (2001)
Perea-Lopèz, Ydstie, and Grossmann (2003) formulate a mixed
integer linear programming (MILP) model to optimize strategic
networking issues in multi-echelon supply chains. Multi-objective
approaches for production and distribution scheduling scheme in
multi-echelon supply chain networks are shown in Chen and Lee
(2004), Sabri and Beamon (2000), Sakawa, Kato, and Nishizaki
(2003). Talluri and Baker (2002) develop a multi-phase mathemat-
ical programming model with a combination of multi-criteria
efficiency measures based on game theory concepts, and mixed
integer linear programming methods. Amiri (2006), Ding,
Benyoucef, and Xie (2005), Jayaraman and Prkul (2001) and Ross
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(2000) addressed performance planning through resource alloca-
tion in supply networks by developing a profit maximizing model
for distribution planning for the traditional make-to-stock supply
chains.

Demirli and Yimer (2008) propose a mixed integer fuzzy pro-
gramming (MIFP) approach to the production–distribution sched-
uling problem in BTO manufacturing supply chains with
uncertain cost parameters. The effect of price incentives on de-
mand characteristics of customizable BTO products is modeled as
a stochastic dynamic programming problem in Weng and Parlar
(2005). The use of modularity in the BTO product design as a solu-
tion to optimal return policy in internet marketing is presented in
Mukhopadhyay and Setoputro (2005).

Genetic algorithm (GA) based approaches have been applied to
different production, distribution and inventory related problems
in supply chain operations. A GA based approach is proposed by
Moon et al. (2002) to determine optimal schedule of machine
assignments and operations sequences in a make to stock supply
chain, so that the total tardiness will be minimized. In two-echelon
single vendor–multiple buyers supply chain model under vendor
managed inventory (VMI) mode of operation, Nachiappan and
Jawahar (2007) formulates a nonlinear integer programming
problem (NIP) with a GA based heuristic in order to find out the
optimal sales quantity for each buyer. A genetic algorithm solution
procedure for a mixed integer nonlinear programming model of a
dynamic integrated distribution network of third party logistic
providers (3PLs) is discussed in Ko and Evans (2007). Naso, Surico,
Turchiano, and Kaymak (2007) present a scheduling algorithm
that combines a GA and a set of constructive heuristics for the
just-in-time production and delivery of ready-mixed concrete on
a set of distributed and coordinated production centers. A hybrid
genetic algorithm (HGA) is implemented in Torabi, Ghomi, and
Karimi (2006), to solve the economic lot sizing and delivery
scheduling problem in a simple supply chain where the production
system is considered to be a flexible flow line. Lee, Jeong, and Moon
(2002) suggested a genetic algorithm based heuristic to solve an
advanced planning and scheduling (APS) model of a manufacturing
supply chain with outsourcing and due date requirements.

In this paper, a multi-product and multi-plant BTO supply chain
with manifold supply and distribution channels is considered for
analysis. We proposed a two-phase MILP model for procurement,
production, and distribution of customized products in a BTO man-
ufacturing system. As opposed to formulating the problem as a
fully integrated single model, the sequential two-phase approach
helps to develop a robust solution procedure by decoupling the
customized manufacturing operation from the standard compo-
nent fabrication process. The proposed modeling is comprehensive
in nature as it incorporates crucial pragmatic constraints resulting
from capacity limitations, material flow equations, product cus-
tomization and customer service requirements. The rest of the pa-
per is organized as follows. Brief description of the problem
considered for analysis and its mathematical formulation is pre-
sented in Section 2. In Section 3, we put forward a genetic algo-
rithm solution procedure adopted in solving the problem. Results
of numerical experimentation used to demonstrate the proposed
approach are illustrated in Section 4. Summary and concluding re-
marks are given in Section 5. Finally, list of notations used to for-
mulate the mathematical models are set out in the nomenclature
part.
2. Description and formulation of the problem

In general, the build-to-order supply chains operate as a pull
system driven by customer orders at the downstream end of the
network. The finished products manufactured by assembly plants
reach to end user consumers through channels of a distribution
system. Efficient supply and distribution systems are thus essential
entities for manufacturing firms to meet the demand of customers
for good quality products at reasonably low cost. The BTO supply
chain is essentially a hybrid of make-to-order (MTO) and assem-
ble-to-order (ATO) strategies. Standard parts and subassemblies
are acquired or manufactured in-house according to short-term
forecasts, while schedules for few customized components and
the final assembly of products are not executed until detailed prod-
uct specifications have been derived from booked customer orders,
see Sen, Pokharel, and YuLei (2004). As a strategy, the objective of
BTO is to provide custom-made products in a mass-scale. There-
fore, the customer order decoupling point (CODP) in BTO system
falls between the CODP’s of MTO and ATO systems.

As illustrated in Fig. 1, the BTO supply chain network consists of
two major subsystems: a production-subsystem and a distribu-
tion-subsystem. The production-subsystem includes raw-material
suppliers, component fabricators and product assemblers. The dis-
tribution-subsystem while consists finished product warehouses,
intermediate distribution centers (DCs), retailers and downstream
customers. Therefore, the supply chain scheduling problem can
logically be decomposed into two sub-problems:

(i) Phase-1: Developing a dynamic model for assembling and
distribution planning of final products as per customer order
specifications and

(ii) Phase-2: Formulating a planning model for components fab-
rication and raw-materials procurement, based on the out-
puts of the previous model.

The material acquisition, production and distribution planning
and scheduling problem should be approached in an integrated
manner. The two sub-problems are interrelated to each other
and should be dealt sequentially. The issue of integrated approach
in planning and scheduling of BTO supply chains is addressed by
Demirli and Yimer (2008). Splitting the problem into two-phases,
however, offers a twofold advantage: both operational and model-
ing. From operational management perspective, this approach sim-
plifies planning and control of materials acquisition, processing
and distribution of products. From modeling perspective, the
two-phase approach gives an opportunity to develop more effi-
cient solution techniques without compromising the optimality
of a fully integrated problem.

The entire production–distribution plan operates in a rolling
horizon to allow changes in later periods as new plans are con-
structed. A plan is drawn for all periods in the horizon, but only
the first few periods that fall within the current delivery lead-time
will actually be implemented. When the plan for the first period is
frozen, a new plan is redone for periods from the second up to the
last period plus one. Due to latest information introduced in the
new run, the updated plan discloses more accurate results in the
short-term. The proposed sequential mathematical models are pre-
sented in the next two subsections. The list of notations used in
developing the models are given in nomenclature.

2.1. Phase-1: assembling and distribution plan of products (Model-I)

The production–distribution schedule in BTO systems is driven
by actual orders received from customers. Customers pick their pre-
ferred product styles from retailer catalogue and sign order requisi-
tions. Retailers are the market outlets from which final products are
delivered to customers while new orders are passed to assemblers.
They accumulate and make job orders to the assembly plants ahead
of the projected production and delivery lead-time. Efficient com-
munication channel between dealers and finished product assem-
blers is therefore a critical factor to ensure product availability and
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improve customer service level. The distribution centers are middle
agents, which receive and temporarily stock the finished products
until they are delivered to the retailers. Inventories of final products
at the distribution centers are used to decouple the unequal flow rate
of incoming and outgoing finished products. The assembly plants,
which operate in a build-to-order (BTO) environment, classify the
specific order requisitions made by downstream retailers into fami-
lies of product modules and commit resources to satisfy the demand
within the specified due dates.

Given the demand volume for various styles of products in each
period, the objective is to propose a capacity and resource feasible
economic plan of assembling and distribution of products over a
planning horizon that minimizes the overall operating cost while
maintaining the desired customer service levels. Taking the vol-
ume of assembly job orders in queue and the capacity limitations
into account, two options of assembling schedules-regular time
and overtime – are drawn for each period. The objective cost func-
tion and set of constraints involved are set out in Eqs. (1)–(19).

Minimize :

ZPD ¼ ZAS þ ZDC þ ZRT ð1Þ

Subject to :

ZAS ¼
XT

t¼1

X
p2Xa

XI

i¼1

(
cpi � apit þxpi � QOpit þ bpi � QRpit

þ
XJ

j¼1

cpij � uijðQOpit þ QRpitÞ
)

ð2Þ

ZDC ¼
XT

t¼1

X
q2Xd

XI

i¼1

hqi � Iqit þ
X
p2Xa

spqi � QTpqit

( )
ð3Þ

ZRT ¼
XT

t¼1

X
r2Xr

XI

i¼1

ari �urit þ pri � QNrit þ
X
q2Xd

sqri � QTqrit

( )
ð4Þ

QNrit ¼ ð1� SLritÞ � Drit 8r 2 Xr ð5Þ
QNrit ¼ QNri;t�1 þ Drit � Q rit 8r 2 Xr ð6Þ
Q rit ¼

X
q2Xd

QTqri;t�‘qr 8r 2 Xr ; t > ‘qr ð7Þ

Iqit ¼ Iqi;t�1 þ
X
p2Xa

QTpqi;t�‘pq �
X
r2Xr

QTqrit 8q 2 Xd ð8Þ
X
q2Xd

QTpqit ¼ ðQRpit þ QOpitÞ 8p 2 Xa ð9Þ

SLrit P SLmin 8r 2 Xr ð10Þ
QTqrit 6 vqr �MTCqri 8q 2 Xd; 8r 2 Xr ð11Þ
QTpqit 6 vpq �MTCpqi 8p 2 Xa; 8q 2 Xd ð12Þ
Iqit 6 MICqi 8q 2 Xd ð13Þ
QRpit 6 MRCpi 8p 2 Xa ð14Þ
QOpit 6 MOCpi 8p 2 Xa ð15Þ
QRpit 6 apit �M1 8p 2 Xa ð16Þ
Drit 6 uri;t�‘r

�M1 8r 2 Xr; t P ‘r ð17Þ
QRpit;QOpit;QNrit;Q rit;QTpqit;QTqrit 2 N ð18Þ
apit;urit 2 f0;1g ð19Þ
where; 8p 2 Xa; 8q 2 Xd; 8r 2 Xr; i ¼ 1; . . . ; I; and 8t

– (1) is the objective function of the model. It refers to the total
cost equation for the products assembly and distribution-sub-
system. Eqs. (2)–(19) describe the list of constraints introduced
into the model as a result of capacity limitations, material bal-
ance equations, and service level requirements,
– (2) describes the aggregate cost of assembling products by all
plants. It consists of overhead and setup costs, overtime and reg-
ular time assembling costs, and other costs incurred due to
customization,

– (3) defines the total inventory and transportation costs of prod-
ucts by all distribution centers,

– (4) determines the aggregate order setup, shipment and short-
age penalty costs of the retail dealers,

– (5) and (6) define the quantity of backorders for product i in
each period t,

– (7) allows that all the products shipped from distribution cen-
ters to each retail node r should be delivered to the end user cus-
tomers in the same time period t in order to improve
responsiveness,

– (8) provides the inventory status balance of product i at distribu-
tion center q as the sum of the previous period stock balance and
the quantity procured in the current period minus the volume of
product shipped to upstream customers,

– (9) ensures that whole products assembled by plant p are deliv-
ered to the distributors in the same period t so as to eliminate
inventory of finished products at the assembly plants,

– (10) restricts customer service level at each retailer r in period t
is higher than the allowable minimum requirement.

– (11) and (12) define the transportation capacity constraints from
assembly plant p to distributor q and from distributor q to dealer
r, respectively,

– (13) describes the inventory capacity limitation of product i at
each distribution center q,

– (14) and (15) limit the volume of regular time and overtime
assembled products to be under the allowable production
capacities,

– (16) sets the value of apit to 1 if product i is produced by p in per-
iod t or 0 otherwise, and

– (17) sets the value of urit to 1 if dealer r places an assembly order
in period t or 0 otherwise,

– (18) and (19) restrict the values of the specified decision vari-
ables to be non-negative integers and binary integers,
respectively.
2.2. Components fabrication and raw-materials procurement (Model-
II)

Each assembly job requires different components and sub-
assembled units, which have to be either manufactured in-house
or purchased from external sources. Once the quantity of products
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to be assembled in each period are known from Model-I, the next
step is determine the volume of component parts and raw-materi-
als required to meet the production plan. Taking the assembly tree
structure shown in Fig. 2 into account, demand for component j is
given as the maximum of the forecasted value or the actual de-
mand determined from the bill of quantities (BOQ):

DCpjt ¼ Max Fpjt;
XI

i¼1

uijðQRpit þ QOpitÞ
 !

8p 2 Xa; 8t; and j ¼ 1; . . . ; J ð20Þ

where the regular and overtime assembling quantities, QRpit and
QOpit , are obtained from the results of the first phase sub-problem
(Model-I).

The demand for component j can be fulfilled either from inven-
tory or by making a replenishment order right away to the up-
stream component fabricators. Therefore, the due date for each
assembly job is decided based on the volume of waiting jobs and
quantity of required components on hand. Given demand volume
of components in each period, the objective in this case is to obtain
a capacity and resource feasible economic plan fabrication of com-
ponents and requisition of materials. The unit variable cost associ-
ated with each component part represents the material and labor
cost per item if it is manufactured in-house, or the unit price and
transport cost if it is purchased from an external source. The com-
plete listing of the mathematical model for this sub-problem is or-
ganized as follows:

Minimize :

ZCM ¼ ZCF þ ZRM ð21Þ
Subject to :

ZCF ¼
XT

t¼1

X
p2Xa

XJ

j¼1

kpj � Jpjt þ
X
k2Xf

ðrkpj � /kpjt þ #kpj � QCkpjtÞ

8<
:

9=
; ð22Þ

ZRM ¼
XT

t¼1

X
k2Xf

XL

l¼1

(
qkl � Lklt þ skl � hklt þ gkl � QLklt

9=
; ð23Þ

DMklt ¼
X
p2Xa

XJ

j¼1

dlj � QCkpjt 8k 2 Xf ð24Þ

Jpjt ¼ Jpj;t�1 þ
X
k2Xf

QCkpjt � DCpjt 8p 2 Xa ð25Þ

Lklt ¼ Lkl;t�1 þ QLklt � DMklt 8k 2 Xf ð26Þ
QCkpjt 6 wkpj �MDCkpj 8k 2 Xf ; 8p 2 Xa ð27Þ
Jpjt 6 MJCpj 8p 2 Xa ð28Þ
Lklt 6 MLCkl 8k 2 Xf ð29Þ
QCkpjt 6 /kpjt �M1 8k 2 Xf ; 8p 2 Xa ð30Þ
QLklt 6 hklt �M1 8k 2 Xf ð31Þ
Jpjt;QCkpjt 2 N 8k 2 Xf ; 8p 2 Xa ð32Þ
Lklt ;QLklt P 0 8k 2 Xf ð33Þ
/kpjt; hklt 2 f0;1g 8k 2 Xf ; 8p 2 Xa ð34Þ
where; j ¼ 1; . . . ; J; l ¼ 1; . . . ; L; and 8t
- (21) is the objective function of the current model. It represents the
total cost equation for the components fabrication and raw-mate-
rials replenishment subsystem. Eqs. (22)–(34) represent the vari-
ous capacity and material balance constraints of the model,

- (22) determines the aggregate cost of components procurement
and stock keeping by all assembly plants,

- (23) describes the aggregate cost of replenishment and ware-
housing of raw-materials by all fabrication plants,
- (24) calculates the volume of raw-material l to be consumed by
fabricator k in each period t,

- (25) and (26) show the inventory level of component j at assem-
bly plant p, and raw-material l at fabrication plant k in each per-
iod t, respectively. The inventory status balance is calculated as
the sum of the previous period stock balance and the quantity
procured in the current period minus the quantity utilized in
period t,

- (27) restricts the quantity of component j procured by plant p
from k in period t to be within the delivery capacity of the
fabricator,

- (28) and (29) define the inventory capacity limitations of com-
ponents at each assembly plant p and raw-materials at each
fabrication plant k, respectively,

- (30) sets the value of /kpjt to 1 if p procures component j from
fabricator k in period t or 0 otherwise,

- (31) sets the value of hklt to 1 if k places an order to purchase
raw-material l in period t or 0 otherwise,

- (32)–(34) restrict the values of the specified decision variables
to be non-negative continuous, general integers or binary inte-
gers, respectively.

3. A genetic algorithm based solution procedure

The product assembling and distribution model formulated in
Phase-1 involves a complex shape of search space with too many
candidate solutions. When the underlying solution space has a
complex landscape, general search methods such as genetic algo-
rithm (GA) are applicable for fast exploration. Different genetic
operators and selection mechanisms can be implemented to pro-
tect the GA from being trapped at a local optimum area. In this sec-
tion, a GA based solution methodology developed to solve the first
phase problem efficiently will be discussed.

Introduced by Holland (1992), Genetic algorithms (GAs) be-
long to a class of intelligent stochastic search techniques inspired
from the principle of ‘survival-of-the-fittest’ in natural evolution
and genetics. GAs are known to search efficiently in a large search
space, without explicitly requiring additional information (such as
convexity, or differentiability) about the objective function to be
optimized. As a result, in the last decade, GAs have been applied
successfully for a wide variety of combinatorial optimization
problems to find (near-) optimal solutions. Genetic algorithms
work iteratively on a population of candidate solutions of the
problem (chromosomes), performing a search guided by genetic
operators (selection, crossover and mutation) based on a’fitness
value’ assigned to each individual according to a problem-specific
objective function. GA explore solutions with increasing fitness,
i.e., the higher the fitness, the more likely the genes of a chromo-
some are propagated to the next generations (Naso et al., 2007,
Torabi et al., 2006).

3.1. Chromosomal encoding of solution

Prior to the application of GA, it is important to define an
encoding strategy to transform a generic solution of the problem
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into a string of symbols suitable to the application of genetic
operators. In GA literature, an encoded solution is generally re-
ferred to as chromosome, and a single parameter of the solution
vector is called a gene. Designing a more suitable chromosomal
representation of a solution is a key issue for successful imple-
mentation of GA (Naso et al., 2007, Ko & Evans, 2007). For the
problem under study, the chromosome structure shown in
Fig. 3 is selected.

The first member, ID 2 f1; ::; Ig refers to the index number of a
product considered in the current loop of GA application. The
second member Q pt is the total volume of product assembled
by plant p in period t both at regular time and overtime. The
third member Iqt is the inventory level of the same product in
period t at distribution center q. Given the quantity of products
delivered to q in period t, the fourth member jpqt 2 ð0;1Þ is the
proportion of those assembled by plant p. Similarly given the
volume of products reached at retailer r in period t, the fifth
member gqrt 2 ð0;1Þ refers to the fraction that comes from dis-
tributor q. The customer satisfaction level (i.e., ratio of actual
to promised delivery volume) at retailer r in period t is given
by the sixth member SLrt . The second member from the last, f,
represents the fitness value assigned to the particular chromo-
some based on its objective value-aggregate production–distribu-
tion cost. The last member of the solution structure,
status 2 f0;1g is a binary variable representing the feasibility of
the chromosome. When the solution is decoded into its pheno-
type space, if an individual chromosome satisfies all of the con-
straints, then status ¼ 1; or status ¼ 0 otherwise. Note that the
given solution structure is composed of a mixture of binary,
integer, and floating type members.

3.2. Decoding and fitness evaluation

Chromosome decoding is the process of transforming a geno-
type solution representation into a corresponding phenotype
version. It generates a candidate solution to a set of decision
variables and the associated objective function value. In our case,
the components of the original objective function include the
aggregate costs of assembling, distribution and retailing of a spe-
cific product at all nodes of the supply chain.

Given a genotype representation of an individual solution:
½IDjQ pt jIqt jjpqtjgqrt jSLrt jf jstatus�, the values corresponding to the

phenotype variables in the original problem are determined as
follows:

Step-1: Demand satisfaction level, quantity backordered and
quantity delivered to retailer r in period t are first determined by

SLrit ¼ SLrt 8r 2 Xr ; 8t and i ¼ ID ð35Þ
QNrit ¼ roundfð1� SLrtÞ � Dritg 8r 2 Xr ; 8t and i ¼ ID ð36Þ
Q rit ¼ Drit þ QNri;t�1 � QNrit 8r 2 Xr ; 8t and i ¼ ID ð37Þ
urit ¼ 1 if ðDrit > 0Þ; or 0 otherwise; 8r 2 Xr ; 8t; and i ¼ ID ð38Þ

Step-2: Fig. 4 illustrates the product flow in, through and out of
a distribution node q.

Therefore, the inventory and quantity transport parameters at
distributor q in period t are given by
ID  Qpt Iqt κpqt ηqrt SLrt   f   status    

Integers Floating 
Numbers

Binary 

Fig. 3. Chromosomal representation of solution.
Iqit ¼ Iqt 8q 2 Xd; 8t and i ¼ ID ð39Þ
QTqrit ¼ roundðQ rit � gqrtÞ 8q 2 Xd; 8t and i ¼ ID ð40Þ
Qoutqit ¼

X
r2Xr

QTqrit 8q 2 Xd; 8t and i ¼ ID ð41Þ

Qinqit ¼ Qoutqit þ Iqit � Iqi;t�1 8q 2 Xd; 8t and i ¼ ID ð42Þ
QTpqit ¼ roundðQinqit � jpqtÞ 8q 2 Xd; 8t and i ¼ ID ð43Þ

Step-3: The volume of a product assembled by plant p in period t
on regular time and overtime basis are given by

QApit ¼ Q pt ¼
X
q2Xd

QTpqit 8p 2 Xa; 8t and i ¼ ID ð44Þ

QRpit ¼minfQ pt ;MRCpig 8p 2 Xa; 8t and i ¼ ID ð45Þ
QOpit ¼maxf0;Q pt �MRCpig 8p 2 Xa; 8t and i ¼ ID ð46Þ
apit ¼ 1 if ðQ pt > 0Þ; or 0 otherwise; 8p 2 Xa; 8t and i ¼ ID

ð47Þ

Step-4: Finally, the aggregate production and distribution cost
of the particular product (i ¼ ID) can be determined as:

ZPD;i ¼
XT

t¼1

X
p2Xa

(
cpi � apit þxpi � QOpit þ bpi � QRpit

þ
XJ

j¼1

cpij � uijðQOpit þ QRpitÞ
)
þ
XT

t¼1

X
q2Xd

(
hqi � Iqit

þ
X
p2Xa

spqi � QTpqit

)
þ
XT

t¼1

X
r2Xr

(
ari �urit þ pri � QNrit

þ
X
q2Xd

sqri � QTqrit

)
; ð48Þ

If a candidate solution is found to be infeasible (i.e., fails to sat-
isfy all constraints of the model), then it is first treated by a repair
heuristic as shown in Fig. 5. The chromosome repair heuristic facil-
itates searching around the boundaries between the feasible and
infeasible region. If the repair operation does not succeed to cure
the infeasible candidate, then a penalty term is introduced to its
objective value in order to undermine its chance of surviving in
the subsequent generations. The penalty value is considerably lar-
ger than any possible objective value corresponding to the current
population of individuals as described in Ko and Evans (2007).

The fitness value is the measure of goodness of a solution with
respect to the original objective function and the degree of infeasi-
bility. For the cost minimization problem we have considered, can-
didate solutions with lower costs imply better solutions and vice
versa (Torabi et al., 2006). Therefore, for each chromosome i, its fit-
ness value fi can be evaluated by taking a proportional factor Kf

times the reciprocal of the objective function value ZPD;i.

fi ¼
Kf

ZPD;i
for i ¼ 1; . . . ;N and Kf ¼ constant ð49Þ
3.3. Initial population

The quality and size of the initial population can largely affect
the efficiency of a genetic algorithm. As a result, a carefully crafted
heuristic is required to generate random chromosomes within the
r

qit qrit
r

Qout QT
∈Ω

=qit pqit
p p

Qin QT
∈Ω

=
Iqit

, 1qit qi t qit qitI I Qin Qout−= + −

∑ ∑

Fig. 4. Product flow in, through and out of node q.
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constrained solution pace. The population size (N) is chosen by
measuring the convergence time of the GA through trial and error
approach. Fig. 6 shows flow chart of a constructive heuristic, which
is used to randomly generate new chromosomes that can easily
satisfy most of the constraints. The steps can be summarized as
follows:

(i) Generate random values of service level achievements (SLrt)
at each node r in period t within the allowable ranges. The
quantities delivered (Qrit) and backordered (QNrit) can easily
be decoded from the given values as shown in the flow chart.

(ii) For a given node r, identify the arcs that stretch back to the
upstream distributors and generate set of random numbers.
Sum up the values over q, and assign the ratio of each ran-
dom number to the sum as the genotype value of the propor-
tion matrix gqrt . The quantities transported from node q to r
in each period (QTqrit) and the volume of product shipped
from each distributor (Qoutqit) are decoded as illustrated.

(iii) Randomly generate values of inventory level at node q in
each period (Iqt) within the allowable bounds as indicated.
Decode the phenotype variable for quantity of products
entering to each distributor (Qinqit) as shown in the flow
chart.

(iv) Considering the links from the upstream nodes to each node
q, generate a set of random numbers and get their sum over
p. Take the ratio of each random number to the sum as the
genotype value of the proportion matrix jpqt . Quantity of
products transported from each node p to q are then
decoded as shown.

(v) Sum up the phenotype values of QTpqit over q to get the geno-
type values for quantities of products assembled in each per-
iod (Qpt).

(vi) Calculate the objective function and fitness value f from the
phenotype solution. Check all the values in the phenotype
space against the constraints. If all constraints are satisfied,
assign a value of ‘1’ to the genotype member status or assign
‘0’ otherwise.
BEGIN 

, 1

, ,

SL 1 {genotype variable}

{genotype variable}

q

q

rit qri
q

rit qri
q

rit rit ri t rit

rit
rt

rit

qri
qrt

rit

IF Q MTC r t and i ID

Q MTC

QN D QN Q

QN

Q

MTC

Q

END IF

∈Ω

∈Ω

−

> ∀ ∀ =

=

= + −

= −

=

1

, ,

I I {genotype variable}

{genotype variable}

p

p

qit pqi
p

qit pqi
p

qt qt qit qit

pqi
pqt

qit

IF Qin MTC q t and i ID

Qin MTC

Qin Qout

MTC

Qin

END IF

κ

∈Ω

∈Ω

−

> ∀ ∀ =

=

= + −

=

END 

Fig. 5. Chromosome repair heuristic.
3.4. Offspring population

A set of genetic operators are usually used to perturb the cur-
rent individuals and create new chromosomes from the old ones.
In the corresponding phenotype space, this is equivalent to search-
ing for new candidate solution (Eiben & Smith, 2003). The newly
generated individuals in the current generation will constitute
the offspring population. A set of problem-specific variation oper-
ators is implemented in our proposed GA. The adapted genetic
operators are described in the next subsections.

3.4.1. Crossover operators
The main purpose of crossover operation is producing better

offspring(s) by combining the genetic alleles of two randomly se-
lected parents from the mating pool. A crossover probability pc

indicates how often crossover will be performed. This parameter
is tuned by a trial and error approach. In our implementation of
GA, three types of problem-specific crossover operators have been
applied:

(i) Averaging crossover (AVEXO): As shown in Fig. 7, this opera-
tor takes the average of some genes in the two parents and
copy the result to the new offspring. At the end of the recom-
bination process, only one offspring is produced. Its opera-
tion can be summarized as follows:

(i) Select two parent chromosomes from the mating poll.
(ii) Transfer the genetic information of product ID from either of

the two parents into the offspring.
(iii) Calculate the simple average values of Iqt;jpqt;gqrt and SLrt

for the two parents.
(iv) Copy the results to the corresponding alleles of the offspring.

Offspring :¼

Iav
qt ¼ 1

2 ðI
p1
qt þ Ip2

qt Þ; 8q 2 Xd; 8t

jav
pqt ¼ 1

2 ðj
p1
pqt þ jp2

pqtÞ; 8p 2 Xa; 8q 2 Xd; 8t

gav
qrt ¼ 1

2 ðg
p1
qrt þ gp2

qrtÞ; 8q 2 Xd; 8r 2 Xr ; 8t

SLav
rt ¼ 1

2 ðSLp1
rt þ SLp2

rt Þ; 8r 2 Xr ; 8t

8>>>>>>><
>>>>>>>:

(v) Decode the genetic values and update the remaining infor-
mation for Q pt , f and status in the offspring chromosome.

(ii) Convex crossover (CONXO): This operator has one random
parameter a called the weighting factor. As illustrated in
Fig. 8, it calculates the convex combinations of some genes
inside the two parents and put the results into the corre-
sponding alleles of the new offsprings. Its operation can be
summarized as follows:

(i) Repeat steps (i) and (ii) of AVEXO.
(ii) Randomly select a value of the parameter a, where a is uni-

formly distributed over (0.05,0.45).
(iii) Giving more weight to the second parent, compute the

weighted average of Iqt ;jpqt;gqrt and SLrt for the two par-
ents,and copy the results to the corresponding alleles of off-
spring-1.

Offspring-1 :¼

Ic1
qt ¼a � Ip1

qt þð1�aÞ � Ip2
qt 8q2Xd; 8t

jc1
pqt¼a �jp1

pqtþð1�aÞ �jp2
pqt 8p2Xa; 8q2Xd; 8t

gc1
qrt¼a �gp1

qrtþð1�aÞ �gp2
qrt 8q2Xd; 8r2Xr ; 8t

SLc1
rt ¼a �SLp1

rt þð1�aÞ �SLp2
rt 8r2Xr ; 8t

8>>>>>>><
>>>>>>>:

(iv) Decode and update the genetic values of Qpt , f and status in
Offspring-1.

(v) To define Offspring-2, repeat the steps (1) to (4) by reversing
the roles of the two parents.
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Offspring-2 :¼

Ic2
qt ¼ð1�aÞ � Ip1

qt þa � Ip2
qt 8q2Xd; 8t

jc2
pqt¼ð1�aÞ �jp1

pqtþa �jp2
pqt 8p2Xa; 8q2Xd; 8t

gc2
qrt¼ð1�aÞ �gp1

qrtþa �gp2
qrt 8q2Xd; 8r2Xr ; 8t

SLc2
rt ¼ð1�aÞ �SLp1

rt þa �SLp2
rt 8r2Xr ; 8t

8>>>>><
>>>>>:
(iii) Uniform crossover (UNIXO): This operator basically
copies partial genetic information from both parents
to the two offsprings without making any modifica-
tion. The coping procedure depends on either of the
two possible outcomes of a random tossing experi-
ment. Its general operation is illustrated in Fig. 9,
and summarized next:
(i) Repeat steps (i) and (ii) of AVEXO.
(ii) Perform a tossing experiment and record the out-

come (i.e., Toss ¼ RANDOMf0;1g).
(iii) Make copies of the genes according to the following

rule:

IF ðToss ¼ 1Þ

Offspring-1 : Offspring-2 :

Ic1
qt ¼ Ip2

qt Ic2
qt ¼ Ip1

qt 8q 2 Xd;8t

SLc1
rt ¼ SLp2

rt SLc2
rt ¼ SLp1

rt 8r 2 Xr ;8t

jc1
pqt ¼ jp1

pqt jc2
pqt ¼ jp2

pqt 8p 2 Xa;8q 2 Xd;8t

gc1
qrt ¼ gp1

qrt gc2
qrt ¼ gp2

qrt 8q 2 Xd;8r 2 Xr;8t

ELSE fToss ¼ 0g
Offspring-1 : Offspring-2 :

Ic1
qt ¼ Ip1

qt Ic2
qt ¼ Ip2

qt 8q 2 Xd;8t

SLc1
rt ¼ SLp1

rt SLc2
rt ¼ SLp2

rt 8r 2 Xr ;8t

jc1
pqt ¼ jp2

pqt jc2
pqt ¼ jp1

pqt 8p 2 Xa;8q 2 Xd;8t

gc1
qrt ¼ gp2

qrt gc2
qrt ¼ gp1

qrt 8q 2 Xd;8r 2 Xr;8t

END IF

(iv) Decode and update the remaining genes inside the
two offspring chromosomes.
p

3.4.2. Mutation operators
Mutation slightly alters the genetic composition of a randomly

selected chromosome. The intention here is to provide a small
amount of randomness, and to prevent solutions from being
trapped at a local optimum. Mutation occurs with some probability
pm smaller than a crossover probability. Depending on the encod-
ing scheme of the problem, different mutation operators can be
utilized. In our GA application to the problem under study, the fol-
lowing five problem-specific mutation operators are implemented.

(i) FLIP mutation: This operator first clones a randomly selected
parent chromosome into a new offspring chromosome. Then,
target indices ðq�; r�; t�Þ are set by random selection, where
q� 2 Xq, r� 2 Xr , and t� 2 f1; . . . ; Tg. Based on the outcome
of a random tossing experiment, apply the following rule
to alter the alleles of the cloned offspring chromosome.

IF ðToss ¼ 1Þ

SLc
r� ;t ¼

SLp
r� ;T�t�þt if t 6 t�

SLp
r� ;t�t� otherwise

(

ELSE fToss ¼ 0g

Ic
q� ;t ¼

Ip
q� ;T�t�þt if t 6 t�

Ip
q� ;t�t� otherwise

(

END IF
(ii) SWAP mutation: Similarly, this operator clones a parent chro-
mosome into an offspring chromosome. Target indices
ðq�; r�; t�1; t�2Þ are then chosen randomly from their respective
domain. Observing the outcome of a random tossing experi-
ment, the alleles pointed by t�1 and t�2 are switched one
another according to the following rule:

IF ðToss ¼ 1Þ
SLc

r� ;t�1
¼ SLp

r� ;t�2

SLc
r� ;t�2
¼ SLp

r� ;t�1

(

ELSE fToss ¼ 0g
Ic
q� ;t�1
¼ Ip

q� ;t�2

Ic
q� ;t�2
¼ Ip

q� ;t�1

(

END IF

(iii) COMBINE mutation: In this operator too, we apply the same
principle to fix the target indicesðq�; r�; t�1; t�2Þ. A weighting
factor a 2 ð0:05; 0:45Þ is first randomly chosen. Performing
a random tossing experiment, some alleles of the cloned
chromosome are modified by taking the convex combina-
tions of the values pointed by t�1 and t�2 according to the fol-
lowing rule:

IF ðToss1 ¼ 1Þ
SLc

r� ;t�1
¼ a � SLp

r� ;tast
1
þ ð1� aÞ � SLp

r� ;t�2

SLc
r� ;t�2
¼ a � SLp

r� ;t�2
þ ð1� aÞ � SLp

r� ;t�1

8<
:
ELSE fToss1 ¼ 0g

Ic
q� ;t�1
¼ a � Ip

q� ;t�1
þ ð1� aÞ � Ip

q� ;t�2

Ic
q� ;t�2
¼ a � Ip

q� ;t�2
þ ð1� aÞ � Ip

q� ;t�1

(

END IF

Repeating the tossing experiment one more times, other genes
within the new chromosome are also modified based on the follow-
ing rule:

IF ðToss2 ¼ 1Þ

gc
qr� ;t�1

¼ a � gp
qr� ;t�1
þ ð1� aÞ � gp

qr� ;t�2
; 8q 2 Xd

gc
qr� ;t�2

¼ a � gp
qr� ;t�2
þ ð1� aÞ � gp

qr� ;t�1
; 8q 2 Xd

8<
:
ELSE fToss2 ¼ 0g

jc
pq� ;t�1

¼ a � jp
pq� ;t�1

þ ð1� aÞ � jp
pq� ;t�2

8p 2 Xa

jc
pq� ;t�2

¼ a � jp
pq� ;t�2

þ ð1� aÞ � jp
pq� ;t�1

8p 2 Xa

8<
:
END IF

(iv) BORDERVAL mutation: This operator basically helps to direct
the genetic search process around the border line between
feasible and infeasible regions of the solution space. It
alters the values of some target alleles pointed by ran-
domly selected indices (q�; r�; t�) to their extreme lower
or extreme higher values.After performing a first tossing
experiment, the values of the genotype member SLr�t� in
the cloned offspring chromosome are adjusted as follows:

SLc
r� ;t� ¼

SLmin; If ðToss1 ¼ 1Þ
1:0; If ðToss1 ¼ 0Þ

�

Repeating the tossing exercise one more times, the values of mem-
ber Iq�t� are also modified in the same fashion:

Ic
q� ;t� ¼

(
I�min¼maxf0;Ip

q� ;t��1�Qinq� i;t� g; i¼ ID If ðToss2¼1Þ
I�max¼minfMICq� i;

P
MTCpq�i�Qoutq� ;t� g; If ðToss2¼0Þ :
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Fig. 6. Flow chart of random chromosome generating heuristic.
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(v) RANDOMVAL mutation: This operator intends to introduce
new values of some genes inside a cloned chromosome from
the current population. Some alleles pointed by target indi-
ces (q�; r�; t�) are replaced by new values within their allow-
able ranges. The following rule is applied to make the
necessary modifications on some members of the cloned
individual.
ID       Qpt 
p1 Iqt

 p1 κpqt
 p1 ηqrt

p1 SLrt
p1   f p1    status p1

ID      Qpt 
p2 Iqt

 p2 κpqt
 p2 ηqrt

p2 SLrt
p2  f p2     status p2

Parent-1 

Parent-2 

ID       Qpt 
c Iqt

av κpqt
av ηqrt 

av SLrt
av   f c      status c Offspring 

Fig. 7. Averaging crossover operation.
IF ðToss ¼ 1Þ
SLc

r� ;t� ¼ RANDOMðSLmin;1:0Þ
ELSE fToss ¼ 0g
Ic
q� ;t� ¼ RANDOMfI�min; . . . ; I�maxg

END IF
ID      Qpt 
c2 Iqt

c2 κpqt
c2 ηqrt

c2 SLrt
c2   f c2    status c2

ID      Qpt 
c1 Iqt

c1 κpqt
c1 ηqrt

c1 SLrt
c1  f c1     status c1 Offspring-1 

Offspring-2 

ID       Qpt 
p1 Iqt

p1 κpqt
 p1 ηqrt

 p1 SLrt
p1   f p1    status p1

ID       Qpt 
p2 Iqt

p2 κpqt
 p2 ηqrt

 p2 SLrt
p2  f p2     status p2

Parent-1 

Parent-2 

Fig. 8. Convex crossover operation.



ID       Qpt 
p1 Iqt

p1 κpqt
 p1 ηqrt

p1 SLrt
p1   f p1    status p1

ID      Qpt 
p2 Iqt

p2 κpqt
 p2 ηqrt

p2 SLrt
p2  f p2     status p2

Parent-1 

Parent-2 

ID       Qpt 
c1 Iqt

p1 κpqt
 p2 ηqrt

p2 SLrt 
p1  f c1     status c1 Offspring-1 

ID       Qpt 
c2 Iqt

p2 κpqt
 p1 ηqrt

p1 SLrt
p2   f c2    status c2

Offspring-2 

ID      Qpt 
c2 Iqt

p1 κpqt
 p2 ηqrt

p2 SLrt
p1   f c2    status c2

ID      Qpt 
c1 Iqt

p2 κpqt
 p1 ηqrt

p1 SLrt 
p2  f c1     status c1 Offspring-1 

Offspring-2 

(Toss = 0) 

(Toss = 1) 

Fig. 9. Uniform crossover operation.
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3.5. Parent selection

In genetic algorithm, the selection operator is used to guide the
search process towards more promising regions in a search space.
Several selection methods, such as roulette wheel selection, tour-
nament selection, ranking selection, elitist selection are discussed
in Eiben and Smith (2003) and Michalewicz (1996). In the pro-
posed GA approach, a combination of roulette wheel and elitism
are applied with threshold point being at PE%. In this strategy,
PE% of the population in the new generation are selected by elitist
mechanism, while the rest are selected by fitness proportional
means. The degree of elitism, PE%, is chosen by repeated execution
of the algorithm for a given problem size.
prod  No of  products ? 

RUN GA SIMULATION [for ID=prod]

ID ← prod 

RECORD RESULT: 
Best Solution → Solun [ID] 

START 

prod ← 1

AGGREGATE COSTS: 

,,
11

,
1

,

,

II

AS AS i DC DC i
ii

I

RT RT i PD AS DC RT
i

Z Z Z Z

Z Z Z Z Z Z

==

=

= =

= = + +

STOP

prod ← prod+1

YES

NO

Fig. 10. Execution of GA in a loop.
3.6. Termination criterion and looping

In the proposed GA solution method, for a fixed product ID, the
algorithm is executed until it converges to an incumbent solution
according to a preset stopping criteria. The algorithm terminates
when at least one of the following conditions are satisfied:

(i) Starting from its last improvement, if GA fails to provide bet-
ter solution after additional generations of ‘Max-Interval’, or

(ii) If the maximum generation reaches to a preset value of’ Max-
Gen’.

The best solution obtained is recorded before the algorithm re-
executes itself with the next product ID. The loop will continue un-
til all product indexes are considered in the analysis. The flow chart
shown in Fig. 10 shows the general framework of the proposed GA
operating in a loop.
4. Numerical results

The prototype of the proposed GA algorithm is developed in a
C++ programming platform and executed on a Pentium(R)-4,
300 MHz PC with 1GB of RAM. To illustrate the approach, a supply
chain structure composed of four component fabricators, two
assembly plants, four product distributors and six retailers are con-
sidered (Ref. Fig. 1). Each of the component fabrication factory pro-
cures the required raw-materials from different sources. Factories
k1 and k4 can produce all sorts of components and supply to either
of downstream assembler p1 or p2. Factory k2 produce components
represented by odd indices only while k3 produce those repre-
sented by even indices; and both can supply to p1 and p2 as the
same time. The assembly plants in turn stock the component parts
and assemble different styles of products according to order spec-
ifications. Once customized finishing is done, the final products are
transported to the downstream distribution centers. Only three re-
tail outlets are served by each distribution center q as shown in
Fig. 1.

The proposed algorithm is tested for different problem in-
stances with varying complexity and size. The minimum target
service level at each retail point is set to be 75% of the de-
mand in each period t. The input values for the cost and re-
source parameters of the models are randomly generated
from uniform distributions over certain range of intervals.
The range of intervals selected for each input parameter are
tabulated in Table 1.

For better performance of the algorithm, the GA parameters are
selected through numerical experimentation. In one complete loop
of GA simulation, the population size is 25 while the degree of elit-
ism PE equals 75% of the population. The maximum total genera-
tions and allowable interval generations for improvement before
termination are set to 104 and 103, respectively. The proportional-
ity coefficient for fitness evaluation K ¼ 108, and the penalty factor
for infeasible solution Kp ¼ 1014. The probability values for cross-
over and mutation operators are set to be 0.1 and 0.05, respec-
tively. Table 2 summarizes the results of the production-
distribution scheduling model (Model-I) obtained by repeated exe-
cution of the GA for different problem instances.

An execution of the proposed GA for the simplest problem in-
stance ðP1Þ with only one product item exhibits the convergence
history shown in Fig. 11. The simulation result depicts that the
solution approaches the lower bound very rapidly in the first few
100 generations, and improves slowly in higher generations.

The same set of problem instances are also solved with a com-
mercial software called LINGO 8.0. The software gives exact solu-
tions for the first three problem instances (P1–P3). For higher
problems instances (P4–P9), it cannot converge to an optimal solu-



Table 1
Selected range of values for input data of parameters in the test problems.

Parameter Range of values Parameter Range of values Parameter Range of values

qkl ð1;20Þ � 10�2 cpij ð100;200Þ uij ð0;3Þ
skl ð1;10Þ spqi ð10;20Þ MTCpqi ð10;15Þ � 102

gkl ð10;100Þ sqri ð10;20Þ MTCqri ð15;25Þ � 102

rkpj ð100;200Þ cpi ð100;200Þ MDCkpj ð25;40Þ � 104

#kpj ð100;200Þ bpi ð100;200Þ MRCpi ð20;35Þ � 102

kpj ð5;10Þ � 10�1 xpi ð200;300Þ MOCpi ð7;150Þ � 102

hqi ð1;2Þ Iqi;0 ð5;10Þ � 102 MICqi ð2;3Þ � 103

ari ð10;25Þ Jpj;0 ð2;5Þ � 103 MJCpj ð20;25Þ � 104

pri (200, 300) Lkl;0 ð5;10Þ � 103 MLCkl ð5;10Þ � 104

dlj ð1;25Þ � 10�2 QNri;0 ð10;100Þ Drit ð500;750Þ

Table 2
Summary of GA results for Model-I.

Prob. code Problem size Aggregate costs in millions of dollars Runtime (min)

I J L T ZAS ZDC ZRT Total ZPD

P1 1 5 3 5 6.97 0.23 0.51 7.71 0.61
P2 5 10 3 5 109.04 1.15 2.65 112.84 3.75
P3 10 15 4 5 262.76 2.39 5.25 270.40 9.02
P4 15 25 4 5 699.26 3.46 7.72 710.44 12.35
P5 20 30 5 5 1,770.15 4.66 10.74 1,785.55 18.04
P6 25 40 5 5 2,229.56 5.65 13.38 2,248.59 20.67
P7 30 45 5 5 3,181.07 6.84 15.88 3,203.79 25.41
P8 40 60 5 5 5,709.43 9.43 21.60 5,740.45 38.70
P9 50 75 6 5 6,903.99 11.75 27.07 6,942.81 49.51
P10 100 150 10 5 25,672.12 23.82 55.68 25,751.62 124.26
P11 200 300 10 5 101,539.45 46.76 115.92 101,702.13 375.87

0 5 10 15 20 25 30 35
7

7.5

8

8.5

9

9.5

10
x 10

6

Time [sec]

Z
P

D
 in

 [$
]

Convergence Property of GA for instant problem p
1

Lower Bound

Fig. 11. Convergence of GA for test problem P1.
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tion in the first 48 h, but bears a lower bound solution of the LP
relaxation. For the last two problems (P10 and P11), the number
of constraints and integer variables involved exceed the allowable
Table 3
Summary of LINGO results and comparison with GA.

Prob. code LB solution for Phase-1 aggregate costs in millions Comp. w

ZAS ZDC ZRT Total ZPD

P1 6.94 0.19 0.52 7.64 99.17
P2 108.79 1.10 2.58 112.47 99.67
P3 262.16 2.25 5.14 269.55 99.69
P4 698.20 3.29 7.56 709.05 99.80
P5 1769.10 4.37 10.35 1783.81 99.90
P6 2227.42 5.24 12.89 2245.56 99.87
P7 3177.85 6.40 15.36 3199.61 99.87
P8 5706.28 8.73 20.62 5735.63 99.92
P9 6892.00 11.00 32.83 6935.83 99.90
P10 x x x x x
P11 x x x x x

x = Problem oversized to be solved by LINGO.
limitations of the software to produce any feasible solution. Com-
paring the results obtained by GA with that of the lower bound
from LINGO for identical problem instance, the closeness rating
factor is computed by:

C:R: ¼ 1� ZPD;GA � ZPD;LB

ZPD;LB

� �
� 100% ð50Þ

For the second sub-problem, however, the software gives opti-
mal solutions for a wide range of problem sizes in less than two
hours of execution time. Therefore, the GA solution approach is
not extended beyond Phase-1 to include the second model. A sum-
mary of results obtained by LINGO, and a comparison with the GA
solutions are summarized in Table 3.

5. Conclusion

This paper addresses the dynamic scheduling of materials
replenishment, component fabrication, customized assembly and
distribution of products in a multi-stage BTO supply chain manu-
ith GA (C:R:ð%Þ) Optimal solutions for Phase-2 aggregate costs in millions

ZCF ZRM Total ZCM

2.52 0.05 2.57
99.68 10.48 110.16

249.78 53.43 303.21
1153.44 224.08 1377.52
1838.56 318.25 2156.81
2200.65 489.73 2690.38
3099.46 662.02 3761.47
5524.14 1546.08 7070.22
6645.94 1685.71 8331.64

x x x
x x x
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facturing system. For the sake of efficient modeling performance,
the entire problem is first decomposed into two sub-problems:
products assembling and distribution plan, and component fabri-
cation and materials requisition plan. The sub-problems are then
formulated as mixed integer linear programming (MILP) models
with the objective of minimizing the associated aggregate costs
while improving customer’s satisfaction. A genetic algorithm based
heuristic solution approach is proposed to the production-distribu-
tion planning sub-problem. Using some instances of test problems,
the best solutions obtained from GA are compared with their lower
bounds obtained from LINGO. The GA results indicate that the
range of gaps with respect to solution quality is in the order of
99.17–99.92% of its lower bounds. In addition, the proposed GA ap-
proach solved all the test problems within a very short period of
computational time, mostly in less than 3 h. However, the exact
solution approach using LINGO could not provide a solution to
the bigger test problems within two days, owing to the complexity
of the problem structure.
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