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This work examined recent literature on digital image processing in the field of diabetic retinopathy.
Algorithms were categorized into 5 steps (preprocessing; localization and segmentation of the optic
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disk; segmentation of the retinal vasculature; localization of the macula and fovea; localization and seg-
mentation of retinopathy). The variety of outcome measures, use of a gold standard or ground truth, data
sample sizes and the use of image databases is discussed. It is intended that our classification of algo-
rithms into a small number of categories, definition of terms and discussion of evolving techniques will
provide guidance to algorithm designers for diabetic retinopathy.
igital imaging
mage processing

. Introduction

Over the last decade, high resolution color digital photography
as been recognized as an acceptable modality for documenting
etinal appearance. Images are easily captured using a conventional
igital camera back, attached to a retinal camera body designed to
ompensate for the optics of the eye. The digital format provides a
ermanent, high quality record of the appearance of the retina at
ny point in time. Electronic storage, retrieval and transmission are
ossible without loss of image quality.

One well recognized application for retinal digital imaging is
ithin screening programs for diabetic retinopathy (DR). This dis-

ase is the commonest cause of blindness in people of working age,
as an effective treatment available to prevent vision loss but is
symptomatic until late in the disease process. The UK National
creening Committee currently recommends annual screening for
ll diabetic patients aged 12 years and over, using digital retinal pho-
ography (www.nscretinopathy.org.uk). Images may be captured at
venue convenient to the patient’s home or work and data then

ransferred to a central location where they are read and inter-
reted by trained graders. Quality assurance must be an integral
omponent of any screening programme, and as in breast screening

rograms, a high proportion of all images should be double read.

Population growth, an aging population, physical inactivity and
ncreasing levels of obesity are contributing factors to the increase
n the prevalence of diabetes. The global prevalence of diabetes is
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expected to rise from 2.8% in 2000 to 4.4% of the global population
by 2030 [1]. In the UK the number of diabetic people is approxi-
mately 2.3 million (www.diabetes.org.uk). If all diabetic people are
to undergo regular screening within a quality assured framework,
the workload is going to be substantial.

Grading retinal images for the presence of diabetic retinopa-
thy is largely a pattern recognition task. The typical features of
diabetic retinopathy are microaneurysms, small intra retinal dot
hemorrhages, larger blot hemorrhages, all of which are red lesions,
and whitish lesions for example lipid exudates, and cotton wool
spots which are nerve fiber layer microinfarcts. Graders are taught
to recognize these lesions against the background appearance of
the ‘normal retina’. With an increasing diabetic population and
the need for quality assurance pathways, it is not surprising that
considerable effort has been spent over the past 10–15 years on
investigating whether these lesions could be detected by computer
aided pattern recognition algorithms.

The process of detecting multiple patterns and their relationship
within a retinal image is made up of a series of operations or steps,
with low-level image processing operations providing a basis for
higher level analysis. Digital retinal images are usually processed
in an algorithmic sequence, with the output of one stage forming
the input to the next. For example, a typical sequence may consist of
one or more preprocessing procedures followed by image segmen-
tation, feature extraction and classification stages. Preprocessing

may be used to normalize image brightness, correct for image non-
uniformity, reduce noise or reduce image artifacts. Segmentation
decomposes an image into its constituent regions or objects, for
example retinal blood vessels, optic nerve head or pathological
lesions. Feature extraction typically computes quantitative infor-

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
http://www.nscretinopathy.org.uk/
mailto:rj.winder@ulster.ac.uk
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Table 1
List of references of the papers which addressed steps A–E either in part or in full.

A. Preprocessing
Badea et al. [78]; Cree et al. [25]; Ege et al. [37]; Foracchia et al. [6]; Gagnon et al. [96]; Goatman et al. [23]; Goh et al. [103]; Hipwell et al. [68]; Narasimha-Iyer et al.

[126,64]; Osareh et al. [24]; Raman et al. [139]; Sinthanayothin et al [71,145]; Usher et al. [27]; Walter and Klein [152]; Yang et al. [157]; Zhang and Chutatape [158]

B. Localization and segmentation of the optic disk
Abdel-Razik et al. [76]; Chutatape and Li [86]; Eswaran et al. [92]; Fleming et al. [94]; Foracchia et al. [8]; Gagnon et al. [96]; Goh et al. [103]; Hajer et al. [106];

Hoover and Goldbaum [43,3]; Hwee et al. [112]; Kochner et al. [36]; Lalonde et al. [41]; Lee et al. [118]; Li and Chutatape [120,121,63,39]; Lowell et al. [28]; Mendels et
al. [49]; Narasimha-Iyer et al. [126,64]; Niemeijer et al. [130], Noronha et al. [132]; Osareh et al. [133]; Sanchez et al. [40]; Saradhi et al. [142]; Sekhar et al. [144];
Simandjuntak et al. [146]; Sinthanayothin et al. [21,71,145]; Tobin et al. [65]; Usher et al. [27]; Walter and Klein [46,13,152,153]

C. Segmentation of the retinal vasculature
Abdel-Razik et al. [76]; Abdurrazaq et al. [77]; Can et al. [79,80,81]; Chanwimaluang et al. [82,83]; Chapman et al. [84]; Chutatape et al. [85,86]; Cornforth et al. [87];

Dua et al. [89]; Estabridis et al. [91]; Fang et al. [93]; Fleming et al. [94]; Gagnon et al. [96]; Gang et al. [97]; Gao et al. [99,100,101]; Goh et al. [103]; Grisan et al. [104];
Hayashi et al. [108]; Hong et al. [109,110]; Hoover et al. [44]; Hsu et al. [111]; Hwee et al. [112]; Iqbal et al. [113]; Jiang et al. [114]; Kochner et al. [36]; Lalonde et al.
[30,117]; Leandro et al. [18]; Lee et al. [119]; Li and Chutatape [120,122]; Lowell et al. [53]; Mahadevan et al. [124]; Martinez-Perez et al. [125]; Narasimha-Iyer et al.
[126,64]; Niemeijer et al. [131,129]; Noronha et al. [132]; Pedersen et al. [135]; Pham et al. [136]; Raman et al. [139]; Sanchez et al. [40]; Simandjuntak et al. [146];
Sinthanayothin et al. [21,71,145]; Staal et al. [147]; Tan et al. [148]; Truitt et al. [149]; Tsai et al. [150]; Usher et al. [27]; Walter and Klein [46,13,152]; Yang et al. [57]

D. Localization of the macula and fovea
Chutatape and Li [86]; Estabridis et al. [90]; Fleming et al. [94]; Gagnon et al. [96]; Li et al. [63,39]; Narasimha-Iyer et al. [126,64]; Niemeiijer et al. [129]; Noronha et

al. [132]; Simandjuntak et al. [146], Sinthanayothin et al. [21,71,145]; Tobin et al. [65]

E. Segmentation of retinopathy
Badea et al. [78]; Cree et al. [25]; David et al. [88]; Ege et al. [37]; Estabridis et al. [90]; Eswaran et al. [92]; Fleming et al. [94]; Fleming et al. [95]; Gang et al. [98];

Garcia et al. [102]; Goh et al. [103]; Grisan et al. [105]; Hansen et al. [107]; Hipwell et al. [68]; Hsu et al. [111]; Kahai et al. [115,116]; Kochner et al. [36]; Larsen et al.
[ 4]; Na
[ 40]; S
T 3,154
C

m
u
s

(

(

(
(

m
r
c
i
r
W
f

2

(
t
t
a
t
t
d

l
r
i
i
l
A

73]; Lee et al. [72], Li et al. [120,63,39]; Luo et al. [123]; Narasimha-Iyer et al. [126,6
24]; Pallawala et al. [134]; Quellec et al. [137,138]; Raman et al. [139], Sagar et al. [1
ruitt et al. [149]; Usher et al. [27]; Vallabha et al. [151]; Walter and Klein [13,152,15
hutatape [158]

ation from the segmented objects. The extracted features can be
sed to classify objects according to predetermined criteria such as
ize, morphology and color.

The objectives of this paper are

1) to review the relevant literature over a 10 year period in the
field of digital image processing in DR;

2) to provide researchers with a detailed resource of the main
algorithms employed;

3) to categorize the literature into a series of operations or steps;
4) to identify potential areas for improving research design and

reporting.

The paper is organized as follows: Section 2 describes the
ethodology used for the literature review. Section 3 gives the

esults of the review. Section 4 provides a detailed survey of the
ommon computational steps for detecting retinal features. The
mage processing operations for detecting the optic nerve head,
etinal vasculature, fovea, macula and retinopathy are described.

e conclude in Section 2 by discussing recent trends and directions
or future work.

. Literature survey methodology

In their 2003 report for NHS Health Technology Assessment
HTA) [2] Sharp and co-authors included in their objectives, a sys-
ematic literature review of digital imaging technology as applied
o diabetic retinopathy. This review was completed in 1998. The
uthors stated that their original intent was to provide a quanti-
ative analysis of different digital imaging techniques. They found
hat this was not possible owing to the early stage of evolution of
igital technology in this field.

The work reported in this paper analyses and categorizes the
iterature on the use of digital imaging techniques in diabetic

etinopathy during the period 1998–2008. Further literature is
ncluded in the text to illustrate the development of image process-
ng techniques and algorithms in this field. However this supporting
iterature was not included in the analysis reported in Section 3.

survey methodology was developed which included the search
yak et al. [127]; Niemeijer et al. [128,129]; Noronha et al. [132]; Osareh et al.
anchez et al. [40,141]; Satyarthi et al. [143]; Sinthanayothin et al. [71,145];
]; Wang et al. [14]; Xiaohui et al. [155,156]; Yang et al. [57,157]; Zhang and

strategy, data extraction from the literature and analysis of findings.
The following bibliographic databases were searched systemati-
cally: PubMed (National Library of Medicine), MEDLINE, EMBASE
(Elsevier Science Publishers), Cochrane Library (Wiley), EI Compen-
dex Plus (Elsevier Science Publishers); National Research Register
(NRR), IEEExplore Digital Library (IEEE).

The studies included in this survey examined the use of novel
computer algorithms to detect normal and pathological retinal fea-
tures within the context of diabetic retinopathy. Secondary source
articles describing the algorithms applied were identified from
the reference lists of the reviewed articles and, although some
were outside the date range, they were included for completeness.
Analysis of the literature was carried out as follows: papers were
categorized according to the image processing step(s) addressed
and algorithms used; an analysis of reporting and/or evaluation
methodologies was performed using the following five factors:
reproducible description of the methodology; sample size if quoted;
the use of a defined standard; objective result presented in numer-
ical terms; sensitivity and specificity data reported. The literature
was reviewed and a detailed overview of the image processing steps
is presented in Section 4.

3. Literature survey results

One hundred and twenty seven articles were identified which
met the criteria for inclusion. Where possible the main focus of
each paper was identified, in terms of which step in the processing
sequence was addressed. Five primary steps were defined: prepro-
cessing (A); localization and segmentation of the optic disk (B);
segmentation of the retinal vasculature (C); localization of the mac-
ula and fovea (D); and localization and segmentation of retinopathy
(E). Table 1 lists references of the papers which addressed steps
A–E either in part or in full. Full paper details are provided in the
reference list.

Fig. 1 shows the number of papers which addressed each step in

the processing sequence (A–E). Segmentation of the retinal vascu-
lature (Step C) was a major area of focus within the literature, with
62 articles presenting techniques used for this step in the process.
In contrast, less work was reported on localization of the macula
and fovea (Step D).
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Fig. 1. Figure shows the categorization of literature by image processing step (pre-
processing (Step A); localization and segmentation of the optic disk (Step B);
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(2) Optic disk localization.
egmentation of the retinal vasculature (Step C); localization of the macula and fovea
Step D); localization and segmentation of retinopathy (Step E)).

A total of 19 papers examined the preprocessing of images. Fig. 2
hows the range of approaches to preprocessing and the number
f papers that addressed each method. Of the methods adopted,

ocal contrast enhancement was the technology of choice in seven
apers (36.8%), with other authors reporting on a variety of other
echniques.

Localization of the optic disk and identification of the bound-
ry was examined in 38 articles. Fig. 3 shows that localization
as most frequently achieved by identifying the point of conver-

ence of the main retinal blood vessels, or by using active contour
odels, snakes, principal components analysis (PCA) or the water-

hed transform. A number of articles combined PCA and snakes
o achieve localization of the disk and definition of the boundary.
owever, methods such as simple identification of regions of high

ntensity pixels and adaptive thresholding along with others have
lso been developed.
Fig. 4 shows that two main techniques for vessel segmenta-
ion dominate this group. Of the reviewed articles, 27.4% used a
essel tracking technique, another 19.4% adopted matched filter
echniques and the remainder focused on a variety of technologies,

C

Fig. 2. Figure shows the frequency of distributi
ging and Graphics 33 (2009) 608–622

including amongst others morphological analysis, PCA, wavelets
and edge detection.

Determination of the position of the fovea and macula was
covered by 15 articles, and was achieved almost exclusively by tech-
niques that search for areas of lowest pixel intensity near the optic
disk, usually within a radius of 2–2.5 disk diameters. This category
had the lowest number of papers addressing the issue, indicating a
lack of research in this area. However this may reflect the difficulty
of automatically identifying these features, in isolation from other
anatomical landmarks.

Fifty four articles focused on the detection of the pathological
features of DR. These papers addressed methods for the detection
of bright lesions such as hard exudates or cotton wool spots, and/or
dark lesions such as microaneurysms and hemorrhages. However,
it was not possible to categorize techniques used due to the wide
range of pathological features to be identified. The types of tech-
niques used included region growing, morphological analysis and
classification algorithms.

Examining the reporting and evaluation methodologies, the
following observations were made. Ninety percent of articles pro-
vided a reproducible description of their algorithms and evaluation
methodology; sample sizes ranged between 1 and over 3700; 43% of
papers used a defined standard against which to evaluate their algo-
rithm(s); an objective outcome was reported in 75% of the papers;
sensitivity and specificity were reported in 43% of articles.

4. Literature survey

A total of 127 papers were selected and analyzed. The algorithms
described in these papers were classified in terms of five basic
image processing and decision making categories and associated
primary subdivisions as follows:

. Preprocessing
(1) Correction of non-uniform illumination.
(2) Color normalization.
(3) Contrast enhancement.

. Localization and segmentation of the optic disk
(1) Characteristics of the optic disk.
(3) Optic disk segmentation.
. Segmentation of the retinal vasculature

(1) Characteristics of the vasculature.
(2) Methods for segmenting the vasculature.

on of different preprocessing techniques.
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et al. [6], general-purpose normalization operations typically use
metrics derived from the whole image.

Several authors propose image formation models for describ-
ing the observed retinal images (e.g. Cree et al. [7]; Foracchia et al.
Fig. 3. Figure shows the frequency of distr

. localization of the macula and fovea
(1) Characteristics of the macula and fovea.
(2) Methods for localizing the macula and fovea.

. Localization and segmentation of retinopathy
(1) Microaneurysms/hemorrhages.
(2) Exudates/cotton wool spots.

The following sections discuss each category in further detail.
here possible the relevant algorithms are described with suit-

ble (additional) references, otherwise the reader is referred to the
ppropriate reference for an in-depth description.

.1. Preprocessing of digital color retinal photographs (A)

The main objective of preprocessing techniques is to attenuate
mage variation by normalizing the original retinal image against

reference model or data set for subsequent viewing, process-
ng or analysis. Variations typically arise within the same image
intra-image variability) as well as between images (inter-image
ariability) and in order to obtain meaningful information from
n image, it is necessary to compensate for this variability. Intra-
mage variations arise due to differences in light diffusion, the
resence of abnormalities, variation in fundus reflectivity and fun-
us thickness. Inter-image variability is particularly important for

ongitudinal studies. Differences between images may be caused by
actors including differences in cameras, illumination, acquisition
ngle and retinal pigmentation.

The preprocessing of both monochromatic and color retinal
mages may be loosely classified in terms of the correction for
on-uniform illumination, contrast enhancement and color nor-
alization.

.1.1. Correction of non-uniform illumination
Images are often described using an image formation model. A

imple model describes a monochromatic image based upon illu-
ination and reflectance components. Illumination is the amount
f source light incident on a unit surface area. Reflectance is the
atio of the total amount of reflected light to the total illumination
ncident on a unit surface area. The illumination component of a
igital retinal photograph is characterized by gradual non-uniform
patial variations, whilst the reflectance component tends to vary
n of approaches to optic disk localization.

abruptly, particularly at the edges of anatomical features. Accord-
ing to Hoover and Goldbaum, this non-uniform illumination across
the image results in shading artifacts and vignetting [3] hinder-
ing both quantitative image analysis and the reliable operation of
subsequent global operators. The non-uniformities may not be vis-
ible to the human observer. However, they alter the local statistical
characteristics of the image intensity including mean, median, and
variance. This variability generally limits the reliability of subse-
quent methods for automated feature extraction and classification.

A number of general-purpose techniques have been investi-
gated for attenuating this variation and improving the reliability of
subsequent operators. Early approaches investigated space-variant
filtering schemes supporting locally adaptive contrast enhance-
ments [4]. High-pass filtering and mathematical modeling of the
non-uniformity followed by subtraction of this component from
the observed image [5] have also been investigated for the correc-
tion of non-uniform illumination. However, as noted by Foracchia
Fig. 4. Figure shows the frequency of distribution of image processing techniques
used to perform retinal vessel segmentation.



6 al Ima

[
a
c
b
t
i
S
t
t
b
i
l
t
n
j
a
W
l
b
c
p
c
w
d

w
t
e
i
s
r
s
e
v
t
b
t
v
t
f
u
m
fi
a

4

m
G
t
w
o
o
o
t
t
S
R
a
i
b
o
i
g
i

12 R.J. Winder et al. / Computerized Medic

8]), typically in terms of a foreground image, background image
nd an acquisition transformation function. The foreground image
ontains the vasculature, optic disk and any visible lesions. The
ackground image contains all illumination variation due to the
ransformation function or the original background. This is the ideal
mage of the retina without any visible vascular structure or lesions.
everal algorithms have been proposed based upon variations of
his image formation model. Shade-correction is a method designed
o remove non-uniform variations in the background image [9]. The
ackground image is first approximated by smoothing the original

mage with a mean or median filter whose size is greater than the
argest retinal feature. The original image may then be divided by
he filtered image or the filtered image subtracted from the origi-
al. The literature reports the use of both procedures often without

ustification as to the use of one method over another [9–12]. Vari-
tions on the shade correction approach have also been proposed.
alter and Klein [13] apply alternating sequential filters to calcu-

ate the background approximation in order to avoid artifacts at the
orders of bright regions. Wang et al. [14] proposed a method for
orrecting for non-uniform illumination based using a non-linear
oint transformation to correct image intensity. However, the prin-
ipal limitation of approaches that estimate correction from the
hole image is the inability to distinguish variations in luminance

ue to features from changes due to illumination.
This problem has been addressed by using the pixels associated

ith a specific retinal feature to contribute to the overall correction
ransformation. Wang et al. [15] proposes an approach based upon
stimating gradual changes in illumination across vessel pixels, and
ts subtraction from the observed retinal image. However, there are
everal drawbacks to approaches which rely upon the detection of
etinal anatomy. Firstly, the localization of retinal features such as
pecific vessels is a difficult task. Secondly, as noted by Foracchia
t al. [6] the macular region has no discernible anatomy such as
essels from which to derive data in order to estimate illumina-
ion drift. Furthermore, there is significant variability in reflectance
etween arteries and veins. Foracchia et al. [6] propose an alterna-
ive approach based upon estimating the luminance and contrast
ariability in the background image. This parameterized model is
hen used to normalize the output image. This study is notable
or the quantitative assessment of the effect of correcting for non-
niform illumination. The parametric model was compared to the
ethod proposed by Wang et al. [14], a low-pass filter and a Wallis

lter. The authors report a reduction in the variation in luminance
nd mean contrast in comparison to the other techniques.

.1.2. Color normalization
Color is a powerful descriptor with significant potential as a

eans of discriminating between retinal features. Early work by
oldbaum et al. [16] identified differences in the color of different

ypes of lesions in color retinal images. In part due to the hard-
are limitations, initial approaches for the automatic detection

f retinal features operated primarily on the intensity component
btained either from “red-free” images or the green channel of RGB
r fluorescein-labeled images. These monochrome components of
he image tended to contain the most relevant diagnostic informa-
ion. Furthermore, empirical observations by several authors (e.g.
hin et al. [17]; Leandro et al. [18]) identify the green channel of
GB images as containing the maximum contrast. Rapantzikos et
l. [19] also note that the green channel appears to provide “more
nformation” and is less subject to non-uniform illumination. The

lue channel contains little useful information for the detection
f retinal features. However, with improvements in the underlying

maging modalities, recently computed techniques have investi-
ated the use of three color channels, as a means of distinguishing
ndividual objects.
ging and Graphics 33 (2009) 608–622

Color normalization is necessary due to the significant intra-
image and inter-image variability in the color of the retina in
different patients. Differences in skin pigmentation and iris color
between different patients affect the coloration of the retina image.
The age of the patient also affects retinal appearance and coloration.
In adolescent patients specular reflection within the retina itself
may result in artefactual features and coloration. Conversely, visual
pigment and macular pigment density may be reduced with age
(Berendschot et al. [20]). Ageing is also associated with lens col-
oration. Yellowing of the lens typically occurs in patients over 30.
This increases the absorption of blue light leading to a variation in
retinal appearance. The material composition of individual lesions
will vary resulting in different reflection, absorption, and scattering
properties. The color of the lesion can range from close to that of
the background color to one with significant contrast. Non-uniform
illumination across the image may also contribute to variations in
color.

Recent work has investigated color normalization techniques for
attenuating color variation. Sinthanayothin et al. [21] transformed
the original retinal image to an intensity-hue-saturation represen-
tation. Hue is the dominant wavelength as perceived by a human
observer. For example, a lesion of a certain type which appears as
yellow or red is defined by its hue. Similarly, the relative “purity” of
a color or the amount of achromatic light mixed with its hue is gen-
erally defined as the degree of saturation of a color. The separation
of the different components allows the normalization of the inten-
sity channel without changing the perceived relative color values
of the pixels.

Histogram equalization redistributes the histogram of each color
channel in the input image such that the output image contains a
uniform pixel value distribution. The assumption is that for each
color plane the pixel rank order is maintained even with variations
in illumination. A monotonic, non-linear transformation function
is applied to equalize the histogram of each separate color channel.
An output image is produced by applying the function to map each
grey level value in the input image to a new corresponding value
in the output image. Peaks and valleys will remain after equaliza-
tion but the distribution may be shifted or “spread” out. However, a
limitation of relying upon equalization is that it is only possible to
produce a single approximation to a uniform histogram. This may
not always provide the desired effect. The histogram equalization
of retinal images tends to over-emphasize the contribution of the
blue channel information since the normal retina usually reflects
little blue light [22]. Furthermore, equalization may be ineffective
in attenuating inter-image variation in retinal images intended for
longitudinal analysis.

Histogram specification is an alternative form of histogram pro-
cessing for color normalization. The distribution of each color
channel is interpolated to more closely match that of a refer-
ence model. The reference model is usually obtained from an
image judged by an expert to have good contrast and coloration
to maximize the performance of an automated detection tech-
nique. Histogram specification is typically comprised of two stages.
First, the histogram of each color channel of the original image is
equalized. Second, an inverse transformation function is applied to
determine (an approximation of) the desired histogram for each
color channel in the output image.

In a recent study, Goatman et al. [23] compared histogram spec-
ification and equalization algorithms for color normalization. The
effect of normalization was determined by plotting the chromatic-
ity values of cotton wool spots, drusen, blot hemorrhages and

hard exudates after each method of color normalization. Inspec-
tion of the resulting chromaticity graphs indicated that histogram
specification achieved the greatest separation between lesion type
clusters after color normalization. However, a quantitative assess-
ment of the compared normalization algorithms was not reported.
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Osareh et al. [24] applied histogram specification to ensure that
ll the sample images matched a reference image distribution.
owever, a limitation of matching a retinal image to a reference
odel is the potential for masking specific lesion characteristics
ithin the resultant histogram. Redistributing the histogram to
atch that of a reference image, which does not necessarily con-

ain the lesion, may obscure evidence of the pathology. For example,
xudates have a yellow white appearance which results in a peak
n the histogram of the green channel. This may be removed if his-
ogram specification to a retinal image not containing exudates is
sed. Recent work by Cree et al. [25] addresses this problem using
oth shade correction and histogram normalization. This proposed
lgorithm retained the overall shape of the histogram and trans-
ormed the hue to be consistent between images.

.1.3. Contrast enhancement
In “vision science”, contrast defines the perceived brightness or

olor variation within an image. Contrast enhancement techniques
re aimed at altering the visual appearance that makes an object (or
ts representation in an image) distinguishable from other objects
nd the background. The contrast of relatively simple images con-
aining uniform regions on a uniform background and the contrast
f colored text on a uniform background is usually measured using
weighted ratio of the difference in the perceived luminance of an
bject and its immediate surroundings.

The use of a luminance ratio may be appropriate when measur-
ng attributes of grayscale sinusoids or uniform patches. However,
s noted by Calabria and Fairchild [26] the use of maximum and
inimum luminance pixels may not correspond with the perceived

ontrast within a complex image. There are no widely accepted
etrics for the measurement of color contrast enhancement. The

erformance of various enhancement techniques is typically quan-
ified either by subjective visual inspection of the output image or
y measuring improvement in the machine recognition task as a
esult of enhancement.

The literature describes a number of methods for contrast
nhancement in order to more readily discern retinal features.
hese preprocessing steps are usually applied to retinal images
fter correcting for non-uniform illumination and color normal-
zation. Retinal images acquired using standard clinical protocols
ften exhibit low contrast and may contain photographic artifacts.
everal authors (for example, Usher et al. [27]; Osareh [22]) also
ote that retinal images typically have a higher contrast in the
entre of the image with reduced contrast moving outward from
he centre. Conventional methods based upon global histogram
echniques for normalizing or enhancing image contrast such as
ontrast stretching and histogram equalization tend to result in
nformation loss in both the brighter and darker areas of a reti-
al image. Contrast manipulation within retinal images is usually
ddressed using a two-stage approach comprised of local contrast
nhancement (LCE) and noise reduction respectively. LCE meth-
ds enhance small regions of interest although any noise within
he image is also amplified resulting in artifactual features. This
ffect is visible particularly in areas with few features such as the
entral region of the macula. The LCE methods are based upon
he use of small windows as local transforms after correcting for
on-uniform illumination. Sinthanayothin et al. [21] propose an
daptive contrast enhancement transformation dependent upon
he mean and variance of the intensity within a local region. The
ransformation operation is applied to the intensity component of

n HSI representation of the image which has been smoothed to
ttenuate background noise. This adaptive transformation provides
large increase in contrast in regions with an initially small vari-

nce (poor contrast) and little contrast enhancement for an initially
arge variance (high contrast).
ging and Graphics 33 (2009) 608–622 613

Similar adaptive LCE methods have also been investigated for
the enhancement of specific features. These methods typically
follow a hierarchical approach intended to manipulate the local
histogram distributions within a specified region. Rapantzikos et
al. [19] propose a multilevel histogram equalization (MLE) method
as a preprocessing step in the detection of drusen. The approach
is based on the sequential application of histogram equalization to
progressively smaller non-overlapping neighborhoods. The size of
the neighborhood is always larger than the target lesion. However,
the detection of multiple types of anatomy and pathology with dif-
ferent physical dimensions is also problematic when relying upon
a hierarchal neighborhood method. The dimensions of the neigh-
borhoods are highly dependent on the size of the lesion within the
image. The neighborhood may be small enough to fit within a lesion
resulting in the introduction of artifactual contrast variations.

4.2. Localization and segmentation of the optic disk (B)

The literature generally defines the localization of the optic disk
as the identification of the centre of the disk either by specifying
the centre of the optic disk or placing a mask within a particular
region of the retina. Segmentation of the optic disk usually refers to
the subsequent task of determining the contour of the disk. Local-
ization and segmentation of the optic disk are important tasks in
retinal image analysis. The disk centre and contour are often prereq-
uisite landmarks in establishing a frame of reference for identifying
retinal anatomy and pathology. The dimensions of the disk may be
used to calibrate measurements in retinal images; for example, the
fovea, which is the centre of vision, is located between the major
temporal retinal vessels approximately 2.5 disk diameters tempo-
ral to the temporal edge of the optic disk [28]. Localizing the optic
disk is also a prerequisite for the computation of some important
diagnostic indices for hypertensive/sclerotic retinopathy based on
vasculature, such as central retinal artery equivalent and central
retinal vein equivalent (Hubbard et al. [29]). Finally, the retinal ves-
sels emanate from the centre of the optic disk. Therefore, the disk
may be used as a starting point for vessel tracking methods (Lalonde
et al. [30]).

4.2.1. Visual characteristics of the optic disk
The optic disk is the visible part of the optic nerve head within

the retina. The optic disk is approximately elliptical in shape with
a vertical meridian (width 1.8 ± 0.2 mm, height 1.9 ± 0.2 mm) [21].
The absence of the pigmented epithelium renders the color of the
optic disk paler than the surrounding retina. Such areas of disk pale-
ness, or pallor, tend to be yellowish or white in color. Nerve fibers
reach the optic nerve head, turn and pass through the optic nerve,
causing a small central depression called the physiologic cup. Major
branches of the central retinal artery emanate from the disk, and
bifurcate to form branch vessels diverging from the main vessel.
Venous vessels converge at the disk into the central retinal vein.
These vessels may obscure parts of the disk rim. The contour of the
optic disk is usually defined as the inner margin of the peripapillary
scleral ring. The contour of the rim typically has variable contrast,
with the nasal side usually less bright than the temporal side. The
area of pallor may appear as a smaller, brighter disk within the
optic disk. There may also be bright regions near the edge of the
disk caused by peripapillary atrophy.

There is significant normal variation in the appearance of the
optic disk. The size and shape of the physiologic cup varies amongst
individuals. The optic disk is generally brighter than the surround-

ing area with a clearly discernible elliptical contour. However, it
may also appear as a hollow ring. In any case the cup appears as
a smaller, brighter region within the optic disk. The nasal side of
the optic nerve head is typically less bright than the temporal side
and occasionally not visible at all. Variation in pigmentation within
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ormal eyes also causes differences in the appearance of the disk.
nother unique aspect of each optic nerve head is the pattern of the

etinal vasculature crossing the disk contour.

.2.2. Optic disk localization
Localizing the centre and rim of the disk is often necessary

o differentiate the disk from other features of the retina and as
n important landmark. Techniques described in the literature for
ptic disk localization are typically aimed at either identifying the
pproximate centre of the optic disk or placing the disk within a
pecific region such as a circle or square. In either case, localization
s complicated by the presence of strong “distractors”. Distractors
nclude vessel edges, spatially varying albedo, peripapillary atrophy
nd large exudative lesions. These features typically have similar
ttributes to the optic disk such as intensity, color and contrast.
arly work generally assumed that the grey level variation in the
apillary region was higher than in any other part of the image
e.g. Chaudhuri et al. [31]). The optic disk was localized by identify-
ng the largest cluster of bright pixels. Algorithms which rely solely
n intensity variation proved simple, fast and reasonably robust for
ptic disk localization in normal retinal images with negligible vari-
tion between images. However, an optic disk obscured by blood
essels or only partially visible may be misidentified using methods
ased solely upon identifying the brightest regions. Such methods
re also highly sensitive to distractors such as yellow/white lesions
r bright artifactual features [32].

Characteristics of the optic disk including intensity, morphol-
gy and color have been investigated for localizing the disk in the
resence of distractors. Sinthanayothin et al. [21] used an 80 × 80
ixel sub-image to evaluate the intensity variance of adjacent pix-
ls. The point with the largest variance was assumed to be the centre
f the optic disk. The assumption is that visible signs of disease
uch as exudates will have a lower intensity variance than the optic
isk. The authors report a 99.1% sensitivity and specificity in local-

zing the centre of the optic disk in images with little or no visible
igns of lesions. However, Lowell et al. [28] report the misidentifi-
ation of the optic disk using this algorithm in retinal images with
large number of white lesions, light artifacts or strongly visible

horoidal vessels. Osareh [22] proposes a similar technique using
110 × 110 pixel template image obtained by averaging the optic

isk region in 25 retinal images. He reports successfully localizing
he approximate centre of the optic disk in 75 out of 75 images.

The Hough transform has been investigated by a number of
uthors for the localization of the optic disk (e.g. Yulong and Din-
ru [33]; Pinz et al. [34]; Liu et al. [35]; Kochner et al. [36]; Ege
t al. [37]; Lowell et al. [28]; Chrastek et al. [38]). The underlying
rinciple used to identify the optic disk is to consider that a retinal

mage is comprised of an infinite number of potential circles which
ass through a number of edge points. The edge points are derived

rom edge information extracted by applying one of several avail-
ble edge detection algorithms. The Hough transform determines
hich of these potential circles intersect with the greatest number

f circles in the image. Each data point in effect votes for an infinite
umber of parameter sets and the parameter set with the highest
otal vote is taken as the solution. Liu et al. [35] used a circular Hough
ransform after edge detection to localize the optic disk in the red
olor channel. The first stage searched for an optic disk candidate
egion defined as a 180 × 180 pixel region that included the bright-
st 2% of grey level values. A Sobel operator was applied to detect
he edge points of the candidate region and the contours were then
etected by means of the circular Hough transform. Kochner et al.

36] proposed a combination of a Hough transform and steerable fil-
ers to automatically detect the location and size of the disk. Points
elonging to the edges of the main vessel branches are extracted
sing first-order Gaussian filter kernels at varying orientations. The
dges of the vessels are fitted to an ellipse via a Hough transform
ging and Graphics 33 (2009) 608–622

and the location of the optic disk is approximated from one end of
the ellipse major axis. The Hough transform is highly tolerant of
gaps in feature contour descriptions and is relatively unaffected by
image noise. This is useful when attempting to isolate the optic disk
which often does not have a clearly defined edge and is broken by
vessels. However, Hough spaces tend to be sensitive to the spatial
resolution of the image [3]. In addition, the prerequisite edge detec-
tion algorithms often fail to provide an acceptable solution due to
the fuzzy boundaries, inconsistent image contrast or missing edge
features in the disk region.

Principal components analysis has also been used as a means of
extracting common features of retinal images including the optic
disk and blood vessels (Li and Chutatape [39]; Sanchez et al. [40];
Sinthanayothin et al. [21]). The PCA procedure projects the original
correlated features described in a vector format onto a new, smaller
uncorrelated space, called principal components. The first princi-
pal component lies along the axis that shows the highest variance
in the data. The covariance matrix of the data is computed, and
Eigenvalues of the matrix are ordered in a decreasing manner. Sev-
eral authors have used PCA to extract common features from retinal
images (Li and Chutatape [39]; Sanchez et al. [40]). The likelihood
of a candidate region being an optic disk was determined by com-
paring the characteristics of the optic disk extracted from a training
image to those derived from an unseen image. Li and Chutatape [39]
report the correct localization of the optic disk in 99% of 89 images.

Lalonde et al. [41] propose a pyramidal decomposition tech-
nique in combination with Hausdorff-based template matching.
First, potential regions containing the optic disk were located by
means of a pyramidal decomposition of the green channel image
using the Harr discrete wavelet transform. The lowest resolution
level has a small image size, thus reducing the visibility of small
bright regions associated with lesions such as exudates. Pixels in
the lowest resolution image which have the highest intensity values
compared with the mean pixel intensity were denoted as candidate
regions. Next, the optic disk was localized using the Hausdorff dis-
tance to compare the candidate region to a circular template with
dimensions approximating the optic disk. The Hausdorff distance
provides a measure of the degree of mismatch between two sets of
points where a Hausdorff distance of zero indicates an ideal match.
A notable aspect of the described approach is the reliance upon
a priori knowledge of the image characteristics. Image descriptors
include whether the image is of a left or right eye and whether the
input image is centered on the macula or optic disk. This reduces
the search area and assigns a confidence value to each candidate
region. Lalonde et al. [41] report the correct localization (without
identifying the contour) of the optic disk in 40 of 40 images with a
mean overlap of 80%. In each case the disk was indicated by posi-
tioning a circular template over the candidate region. However, as
noted by Lowell et al. [28] the use of pyramidal decomposition and
template-matching may prove overly complex, with similar results
achievable using less complex algorithms.

Alternative techniques have been investigated which use dif-
ferent features of the retina such as blood vessels as a means of
localizing the optic disk. Akita and Kuga [42] proposed a vessel
tracking technique to trace the parent–child relationship between
blood vessel segments towards a point of convergence assumed to
be the centre of the optic disk. The approach is based upon iden-
tifying the strongest vessel network convergence as the primary
feature for detection using blood vessel binary segmentation. The
intensity of the optic disk was also used as a secondary feature to
localize the disk. Hoover et al. [3,43] also propose the convergence

of blood vessels as a means of localizing the centre of the optic disk.
The approach correctly identified the optic disk location in 89%
of 81 images, 50 of which were diseased retinas. Another recent
approach proposed by Foracchia et al. [8] localizes the optic disk
by fitting a parametric geometrical model of the retinal vascular



al Ima

s
s
t
m
t
p
i
w
t
i
v
m
i
p
c
e
f
v
i
o
a
p
p
i
t
o
d
o
v
a
r
H
t

4

i
t
i
d
fi
d
i
s

i
u
n
t
c
m
o
R
o
t
o
c
T
w
c

t
a
i
p
c

R.J. Winder et al. / Computerized Medic

ystem to the main vessels extracted from the image. The vascular
tructure is first segmented to provide accurate measurements of
he vessel center point position, diameter and direction. The geo-

etrical model of the retina is then fitted to the main vessels within
he image to localize the center of the optic disk. The model is also
arameterized according to the different rates of vascular curvature

n the nasal and temporal regions. The parameters are optimized
ith respect to the vessel directions measured at points belonging

o the vascular structure. The use of the vasculature means that it
s possible to approximate the location of an optic disk which is not
isible within the image. As noted by Foracchia et al. [8], the esti-
ated position of the optic disk may be compared with the location

ntuitively reconstructed from anatomical knowledge. However, as
reviously discussed, the prerequisite step of segmenting the vas-
ular network is itself a complex and difficult task. Techniques for
xtraction of the vasculature are affected by bright lesions and arti-
actual features such as specular reflectance or visible choroidal
essels (Lowell et al. [28]). For example, false positive responses
n the detection of individual vessels may be caused by the edges
f bright lesions and the edge of the optic disk contour (Hoover et
l. [44]). This misclassification of the vasculature may degrade the
erformance of subsequent methods aimed at identifying the other
arts of the retina such as the optic disk. The impact of incorrectly

dentifying the vasculature on subsequent algorithms for localizing
he optic disk is unclear. Foracchia et al. [8] investigated the use
f a geometrical model of the vasculature structure as a means of
etecting the optic disk. The optic disk was correctly localized in 79
f 81 images using the two algorithmically different methods for
asculature segmentation namely, binary segmentation (Hoover et
l. [44]) and sparse-tracking (Foracchia et al. [45]). Each method
esulted in misclassification of the optic disk in different images.
owever, the overall performance in relation to the detection of

he optic disk was unchanged.

.2.3. Optic disk segmentation
Optic disk contour segmentation is usually performed after

dentifying the approximate centre of the disk. Identifying the con-
our of the optic disk is a non-trivial problem. The natural variation
n the characteristics of the optic disk including the previously
escribed differences in pigmentation and myelination of the nerve
ber layer are significant problems for defining the contour of the
isk. Blood vessels may cross the boundary of the optic disk obscur-

ng the rim of the disk with the edges of vessels also acting as
ignificant distractors.

The literature describes a number of algorithms for determin-
ng the disk contour. Walter and Klein [46] describe an approach
sing color space transformation and morphological filtering tech-
iques for disk localization. The optic disk was first localized using
he luminance channel of the hue-luminance-saturation (HLS)
olor space and a thresholding operation was applied to deter-
ine the approximate locus of the optic disk. The precise contour

f the disk was then determined, using the red channel of the
GB color space, via a “watershed transform”. In determining the
ptic disk, the transform is constrained by markers derived from
he previously calculated approximation of disk center to prevent
ver-segmentation of the disk region. Walter and Klein [46] report
orrectly localizing the optic disk in 29 out of 30 retinal images.
he contour of the optic disk was identified in 27 of the 29 often
ith slight distortion of the contour due to outgoing vessels or low

ontrast.
Algorithms for optic disk segmentation based upon active con-
ours or snakes have been investigated by several authors. Kass et
l. [47] proposed the concept of a deformable contour that changes
ts shape depending on properties of the image, desired contour
roperties or knowledge based constraints. The behavior of classi-
al parametric active contours is controlled by internal and external
ging and Graphics 33 (2009) 608–622 615

energy functions (or forces). The minimization of the total energy
function moves the contour towards the target shape. The external
energies direct the snake towards certain features, such as edges, in
the image. The internal energies such as elasticity and rigidity serve
as a smoothness constraint to resist the deformation. The contour
itself is typically represented by a vector of control points the move-
ment of which adjust the snakes. When a minimum is reached the
contours are smooth and reside on object boundaries. Early work
by Lee and Brady [48] exploited an active contour to determine
the boundary of the optic disk. However, a quantitative assessment
of the approach was not presented in the paper. Mendels et al.
[49,50] investigated applying a morphological operator followed by
an active contour to segment the disk. A dilation operator was first
applied, followed by an erosion operator to re-establish the optic
disk contour. Finally, a morphological reconstruction operator was
applied by maintaining the maximum of the dilated/eroded image
and the original one. Having removed the blood vessels crossing
the disk boundary, an active contour was initialized as a circle cen-
tered on and inside the optic disk. The contour was fitted to the rim
of the disk using the gradient vector flow (GVF) technique (Xu and
Prince [51]). The technique was tested against a set of nine retinal
images. The authors reported an accurate segmentation of the optic
disk contour in all nine images. However, as noted by Lowell et al.
[28], the published images appear to be of relatively high quality
and it is likely the performance of the algorithm would be signifi-
cantly degraded when applied to a greater number of test images
exhibiting a significant variation in the quality and content.

More recent work by Osareh [22] has proposed two key exten-
sions in the use of GVF snakes for optic disk segmentation. The optic
disk was first localized using the previously described template
matching or regression arc algorithm. Secondly, color morphologi-
cal processing was used to obtain a more homogeneous inner disk
area, which increased the accuracy of the snake initialization. An
overall accuracy of 91.84% was reported in comparison to the ref-
erence standard of a clinical ophthalmologist. Lowell et al. [28]
proposed a similar two-stage approach. The optic disk was first
localized using a template matching technique. A specialized three
phase elliptical global and local deformable model with variable
edge-strength dependent stiffness was then fitted to the contour of
the disk. The algorithm was evaluated against a randomly selected
database of 100 images from a diabetic screening programme. Ten
images were classified as unusable; the others were of variable
quality. The algorithm successfully identified the optic disk contour
in 89 of 90 randomly chosen low-resolution diabetic retinal images
using a contour-model-based approach, based upon a technique
developed by Hu et al. [52] for vessel cross-sectional boundary
extraction in magnetic resonance image studies.

4.3. Segmentation of the retinal vasculature (C)

The segmentation and measurement of the retinal vessels is of
primary interest in the diagnosis and treatment of a number of sys-
temic and ophthalmologic conditions. As previously discussed, the
accurate segmentation of the retinal blood vessels is often an essen-
tial prerequisite step in the identification of retinal anatomy and
pathology. In addition, the segmentation of the vessels is useful
for image registration or spatial alignment of images. The registra-
tion of images, which are often acquired using different modalities,
is a critical operation in parametric imaging and the longitudinal
monitoring of retinal appearance.
4.3.1. Characteristics of the retinal vasculature
The retinal vasculature is composed of the arteries and veins,

with their tributaries, which are visible within the retinal image.
The central retinal artery bifurcates at or on the optic disk into divi-
sions that supply the four quadrants of the inner retinal layers. A
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imilarly arranged system of retinal veins joins at the optic disk.
he vessels have a lower reflectance compared to other retinal sur-
aces, thus, they appear darker relative to the background. Light is
bsorbed and reflected by the retinal vessels, the retinal capillar-
es and the choroid. Variations in the thickness of the vessel wall
nd the index of refraction have negligible influence on the appar-
nt width of the blood column. However, occasionally a light streak
unning the length of the vessel is reflected from the transparent
onvex wall of the arteriole (Lowell et al. [53]). Light reflexes and
rtifactual features such as specular reflection are typically found
n the retinal images of younger patients. However, the thicken-
ng and fibrosis of the vessel wall associated with arteriosclerosis
hanges the refractive index and increases the width of the light
eflex.

.3.2. Matched filtering
Matched filtering for the detection of the vasculature convolves

2D kernel with the retinal image. The kernel is designed to model
ome feature in the image at some unknown position and orienta-
ion, and the matched filter response (MFR) indicates the presence
f the feature. Three primary characteristics determine properties
f the kernel. Vessels usually have a limited curvature and may be
pproximated by piecewise linear segments; the diameter of the
essels decreases as they move radially outward from the optic disk;
nd the cross-sectional pixel intensity profile of these line segments
pproximates a Gaussian curve.

Chaudhuri et al. [54] proposed a two-dimensional linear kernel
ith a Gaussian profile for segmentation of the vasculature. The

rofile of the filter is designed to match that of a blood vessel, which
ypically has a Gaussian or a Gaussian derivative profile. The kernel
s typically rotated in 30–45◦ increments to fit into vessels of dif-
erent orientations. The highest response filter is selected for each
ixel and is typically thresholded to provide a vessel image. Fur-
her post processing is then applied to identify vessel segments.
s noted by several authors (Patton et al. [55]; Heneghan et al.

56]) a MFR method is effective when used in conjunction with
dditional processing techniques. However, the convolution ker-
el may be quite large and needs to be applied at several rotations
esulting in a computational overhead which may reduce the per-
ormance of the overall segmentation approach. In addition, the
ernel responds optimally to vessels that have the same standard
eviation of the underlying Gaussian function specified by the ker-
el. As a consequence, the kernel may not respond to vessels that
ave a different profile. The retinal background variation and low
ontrast of the smaller vessels also increase the number of false
esponses around bright objects such as exudates and reflection
rtifacts. Other objects within the image such as the boundaries of
he optic nerve and some hemorrhages and lesions, can exhibit the
ame local attributes as vessels. There are also problems associated
ith detecting very fine neovascularization partly due to image res-

lution. In addition, the use of an overly long structuring element
ay cause difficulty in fitting into highly tortuous vessels. Several

uthors have proposed refinements and extensions which address
any of these problems (Chaudhuri et al. [54]; Kochner et al. [36];
oover et al. [44]; Lowell et al. [53]; Yang et al. [57]).

.3.3. Morphological processing and curvature estimation
The basic morphology of the vasculature is known a priori to

e comprised of connected linear segments. Morphological oper-
tors have been applied to vasculature segmentation (Zana and
lein [58,59]) and also to microaneurysm extraction. Morpholog-
cal processing for identifying specific shapes has the advantage
f speed and noise resistance. Gregson et al. [60] utilize morpho-

ogical closing to help identify veins in the automated grading of
enous beading by filling in any “holes” in the silhouette of the vein
reated during the processing procedure. The main disadvantage of
ging and Graphics 33 (2009) 608–622

exclusively relying upon morphological methods is that they do not
exploit the known vessel cross-sectional shape.

4.3.4. Vessel tracking
Vessel tracking algorithms segment a vessel between two

points. Unlike the previously described techniques for vasculature
segmentation they work at the level of a single vessel rather than
the entire vasculature. A vessel tracking approach typically steps
along the vessel. The centre of the longitudinal cross-section of
vessel is determined with various properties of the vessel includ-
ing average width and tortuosity measured during tracking. The
main advantage of vessel tracking methods is that they provide
highly accurate vessel widths, and can provide information about
individual vessels that is usually unavailable using other methods.
Unfortunately, they require the starting point, and usually the end
point, of a vessel to be defined by a user and are thus, without
additional techniques, of limited use in fully automated analysis.
In addition, vessel-tracking techniques may be confused by vessel
crossings and bifurcations (Frame et al. [61]). Teng et al. [62] address
several of these problems by proposing the use of matched filters.

4.3.5. Pixel-based classification
Several authors have investigated a number of classification

methods for the segmentation of the vessels. Artificial neural net-
works have been extensively investigated for segmenting retinal
features such as the vasculature (Akita and Kuga [42]) making clas-
sifications based on statistical probabilities rather than objective
reasoning. These neural networks employ mathematical “weights”
to decide the probability of input data belonging to a particular out-
put. This weighting system can be adjusted by training the network
with data of known output typically with a feedback mechanism
allowing retraining.

Sinthanayothin et al. [21] preprocessed images with PCA to
reduce background noise by reducing the dimensionality of the
data set and then applied a neural network to identify the pathol-
ogy. They reported a success rate of 99.56% for training data and
96.88% for validation data, respectively, with an overall sensitivity
and specificity of 83.3% (standard deviation 16.8%) and 91% (stan-
dard deviation 5.2%), respectively. The result of the approach was
compared with an experienced ophthalmologist manually mapping
out the location of the blood vessels in a random sample of seventy-
three 20 × 20 pixel windows and requiring an exact match between
pixels in both images.

A significant disadvantage of neural networks is the necessity
for configuring the network with training data or a ‘gold standard’.
This gold standard data set consists of a number of images whose
vascular structure must be precisely marked by an ophthalmolo-
gist. However, as noted by Hoover et al. [44] there is significant
disagreement in the identification of vessels even amongst expert
observers.

4.4. Localization of the fovea and macula (D)

Temporal to the optic nerve head is the macula which appears
darker in color and has no blood vessels present in the centre. The
fovea lies at the centre of the macula and is the part of the retina
that is used for fine vision. Retinopathy in this area, termed macu-
lopathy, is associated with a high risk of visual loss. The macula is a
dark approximately circular area, but the contrast is often quite low
and it may be obscured somewhat by exudates or hemorrhages. As
a consequence a search to obtain a global correlation often fails.

The fovea is located approximately 2–2.5 disk diameters tempo-
ral to the temporal edge of the optic disk and between the major
temporal retinal vascular arcades (e.g. Li et al. [63]; Narasimha-Iyer
et al. [64]). These positional constraints can be used to identify a
small search area for the macula, and to estimate the position if the
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earch fails, although variation in the optic disk size compromises
he reliability of this method. The detection of the macula and fovea
s mainly determined by estimating the position in relation to other
etinal features (e.g. Tobin et al. [65]).

.5. Detection of diabetic retinopathy (E)

.5.1. Clinical features of diabetic retinopathy
Diabetic retinopathy is one of the commonest microvascular

omplications of diabetes. It signifies damage to the microvascu-
ature of the retina and although the pathogenic mechanisms are
ot fully understood, the clinical features are typical and easily
ecognized. Microaneurysms, small outpouchings of the capillary
alls, are the first microvasular changes to appear and are sentinel
arkers for early diabetic retinopathy. With disease progression

mall intra-retinal dot hemorrhages, often indistinguishable from
icroaneurysms appear, and later larger blot hemorrhages. Exces-

ive capillary permeability is manifest as retinal edema usually
ccompanied by lipid exudation. If at the macula this can be seri-
usly sight threatening (diabetic maculopathy). Increasing capillary
ysfunction leads to inner retinal ischemia with the development
f micro infarcts (cotton wool spots), intra-retinal microvascular
bnormalities (IRMA) and later abnormal new vessel formation
proliferative diabetic retinopathy).

.5.2. Detection of microaneurysms/hemorrhages
As with other algorithms designed for the segmentation of

etinal anatomy, early work in the automated detection of pathol-
gy generally investigated fluorescein angiography and “red-free”

mages. Initial techniques relied upon global image-processing
rocedures. Several authors investigated the segmentation of
icroaneurysms from the background retinal image by grey level

hresholding after segmenting anatomy. Binary morphological pro-
essing and structuring elements in the thresholded images allows
urther discrimination between microaneurysms and other fea-
ures, such as small vessel sections.

Spencer et al. [9] proposed a morphological transformation
o segment microaneurysms within fluorescein angiograms. The
hade-corrected image was first “opened” by applying an ero-
ion operator, followed by dilation. An 11-pixel linear kernel was
hen applied in eight rotational orientations that, when com-
ined, included all of the vessel sections and excluded all the
ircular microaneurysms. This opened image was extracted from
he original shade-corrected image using a “top-hat transforma-
ion” producing an image that only contained microaneurysms.
he authors reported a sensitivity of 82% and specificity of 86% in
omparison to a clinician, with 100 false positive pixels per image
eported. However, only four images were included and the method
f comparing the computed output to that of the clinician was not
escribed.

Cree et al. [66] refined this technique using alternative region-
rowing and classification algorithms. This approach automatically
etermined the macular region and included an automated process

or image registration to allow sequential comparisons of microa-
eurysm turnover, based on a registration of longitudinal images.
owever, the authors reported that the automated registration pro-

ess for sequential studies often failed for poor-quality images and
hose with prior laser photocoagulation. The reason for failure in
ither case was not described. Automated selection of the macular
egion of interest was reported as being accurate in 93 of 95 images.

he images were obtained from individual patients with varying
egrees of retinopathy. The images contained 297 microaneurysms
efined by the joint agreement of an ophthalmologist and a medical
hysicist. The automated detection algorithm achieved a sensitivity
f 82%, and specificity of 84% in previously unseen image data.
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Goatman et al. [67] proposed a technique for the detection and
longitudinal monitoring of microaneurysms in fluorescein angiog-
raphy. Using the approach developed by Cree et al. [66], the turnover
of microaneurysms (static, new or regressed) was compared with
a reference standard of an ophthalmologist experienced in identi-
fying microaneurysms and grading of retinopathy in angiographic
images. Compared with manual measurements of nine manual
graders, the automated system was fast and reliable with similar
sensitivity and specificity to manual graders.

Hipwell et al. [68] proposed a method for the detection of
microaneurysms in red-free images. The images were initially pro-
cessed by shade correction of the image, followed by removal
of vessels and other distractors by the top-hat transformation. A
Gaussian matched filter was applied to retain candidate microa-
neurysms for subsequent classification. The classification algorithm
was based on 13 different parameters derived from a training set
of 102 images of variable degrees of retinopathy. The parameters
included shape, intensity, circularity, perimeter length and length
ratio. The study used a total of 3783 images from 589 patients on 977
visits. The images were graded for “presence/absence of microa-
neurysms” and/or “hemorrhages” against the reference standard of
an experienced clinical research fellow according to the EURODIAB
HMA protocol (Aldington et al. [69]). The system produced a sensi-
tivity of 81%, with 93% specificity. However, this was only achieved
when images with questionable HMA present were excluded.

A number of authors have investigated neural networks for
the detection of pathology. An early approach by Gardner et al.
[70] used a back propagation neural network to detect microa-
neurysms and/or hemorrhages. Initial training was performed on
147 diabetic and 32 normal images, analyzing the green chan-
nel from 601 color images, and dividing images into 20 × 20 pixel
or 30 × 30 pixel windows, which were each individually graded
manually by a trained observer. The sub-images were classified as
“normal without vessel”, “normal vessel”, “exudate” and “hemor-
rhage/microaneurysm”. This information was used as the training
set prior to using a previously unseen testing set. The authors
reported detection rates for hemorrhages of 73.8% for both sen-
sitivity and specificity, compared with the reference standard of a
clinical ophthalmologist, based upon 200 diabetic and 101 normal
images. When classifying images into “normal”, “diabetic requiring
referral” and “diabetic not requiring referral”, based on the ref-
erence standard of the clinical ophthalmologist, they reported a
sensitivity of 88.4% and a specificity of 83.5%. Increasing the sensi-
tivity to 99% resulted in a fall in the specificity to 69%.

Sinthanayothin et al. [71] used the previously described recur-
sive region-growing technique and adaptive intensity thresholding
in conjunction with a “moat operator”. The operator increases
the contrast of the lesions by enhancing the edges. A recursive
region-growing segmentation algorithm was applied to the image
and a neural network was then used to extract the retinal blood
vessels. For a total of 30 images (14 of which contained hemor-
rhages/microaneurysms), they reported a sensitivity and specificity
for hemorrhage/microaneurysm detection as 77.5% and 88.7%,
respectively (clinical ophthalmologist as the reference standard).
Again the method of comparison was not described in detail.

Usher et al. [27] also employed a neural network, based on
451 macula-centred color images. After preprocessing and segmen-
tation of anatomy, hemorrhages/microaneurysms were extracted
using recursive region growing and adaptive intensity threshold-
ing in conjunction with a “moat operator” (Sinthanayothin et al.
[71]). Training was performed on 500 patients before analysis of

performance in comparison with a trained clinical diabetologist
(audited by a consultant ophthalmologist) in 773 patients. On a per
patient basis, sensitivity for detection of any exudates and/or hem-
orrhages/microaneurysms was 95.1% (95% confidence interval (CI)
92.3–97.7%) and specificity was 46.3% (95% CI 41.6–51%). For detec-
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ion of diabetic retinopathy, maximum sensitivity and specificity
ere 70.8% and 78.9%, respectively.

A number of authors reported the outcome of algorithms for
he automatic detection of pathology (Lee et al. [72]; Larsen et al.
73]). The result of the processing is described in a clinical con-
ext, however, no details regarding the nature of the processing or
attern recognition were provided. Lee et al. [72] employed color

undus photographs and image processing (image enhancement,
oise removal and image normalization) in conjunction with pat-
ern recognition to test for particular features of yearly diabetic
etinopathy. A sensitivity of 77% and specificity of 94% is reported
hen compared with a general ophthalmologist.

.5.3. Detection of retinal exudates and cotton wool spots
Sinthanayothin et al. [71] identified exudates in color images

ased on the same recursive region-growing technique described
bove to define an “exudate” and “non-exudate” image. After
hresholding to produce a binary image, the regions containing
he exudates were overlaid onto the original image. The authors
eported a sensitivity and specificity (with reference to a clini-
al ophthalmologist grading images manually) of 88.5% and 99.7%,
espectively, for 30 images (21 of which contained exudates). Gard-
er et al. [70] reported a sensitivity of 93.1% using the previously
escribed approach based upon neural networks.

Ege et al. [37] reported the detection of exudates and cotton wool
pots with sensitivity of 99% and 80%, respectively. In comparison
ith a general clinical ophthalmologist, Lee et al. [72] reported sen-

itivities of 96% and 80% and specificities of 93% and 93% for hard
xudates and cotton wool spots.

. Discussion

A structured survey of algorithms for the automatic detection
f retinopathy in digital color retinal images has been presented.
he development of an effective tool for incorporation into diabetic
etinopathy screening programmes is a highly desirable goal. An
fficient system that can routinely analyze digital retinal images
nd eliminate those where no new or increased pathology is
resent, would significantly reduce the workload for ophthalmol-
gists and graders in diabetic retinopathy screening centres. This
eview has focused completely on the analysis of digital color
mages of the retina in the field of diabetic retinopathy.

The process of analyzing a digital color image of the retina may
e viewed as a series of steps, for each of which, a choice of tech-
ologies or algorithms is available. Firstly, the performance of an
lgorithm for the detection of anatomy and pathology can be visu-
lly and quantitatively assessed in terms of the overall performance
f the system. Secondly the individual steps within the algorithm
ay also be individually assessed. The efficiency of each step must

e high, to ensure that the effectiveness of the overall process
s maintained at a satisfactory level of sensitivity and specificity.
lthough significant advances have been made in the application
f digital imaging technology to this field, it remains a challenge
o identify the optimal series of algorithms that would comprise a
uccessful automated image screening system for DR. In this sur-
ey, the diversity of the identified studies made it impossible to
onduct a full quantitative statistical analysis of the performance of
ach processing step within the various approaches. Our descriptive
tatistics show which techniques have been used most frequently
n each of the steps. Whilst frequency of use does not neces-
arily indicate best practice, it does give an indication of which

echniques have been most thoroughly evaluated. The qualitative
nalysis allowed articles to be grouped according to the method-
logical approaches used for each step in the process, and trends
ithin the literature to be identified. It is recognized that in most

ases, the existing methodologies have some shortcomings, and
ging and Graphics 33 (2009) 608–622

many of the articles set out to develop improved methodologies
derived from an existing technique. It is very hard for researchers
to determine which are the best algorithms to employ at each step
to ensure the most efficient throughput of images. This is supported
by Abramoff et al. [74] where they conclude that “automated detec-
tion of diabetic retinopathy using published algorithms cannot yet
be recommended for clinical practice”.

A key issue in the automated detection of anatomy and
pathology is the difficulty in identifying the gold-standard or
ground-truth. As observed by numerous studies there are signifi-
cant differences in regions of interest identified by expert observers.
The clinical significance of discrepancies between observers is also
highly specific to the image. A questionable lesion in a critical
region such as the fovea has greater clinical significance than that
at another location. Further research studies are required that eval-
uate each step of the analysis process and report the sensitivity and
specificity of each step and the process as a whole.

A wide range of study population/sample size was observed
across the literature reviewed, sample sizes ranged from a single
image to over 3700 individual images. It is recognized that a vari-
ety of methods are required for different types of research and that a
large sample size is not always necessary. Perhaps, clear guidelines
in image processing research would be helpful to avoid producing
results/data that are difficult to compare in terms of the success of
the algorithms or techniques.

It was observed that there was a trend towards increas-
ing sample size with studies published more recently compared
to earlier studies. This may be due to increased availability
of digital data in recent years and a move towards evalua-
tion rather than development of methodologies. Abramoff et al.
[74] suggest that performance of algorithms should be evalu-
ated on publicly available validated digital image libraries. The
availability of web based digital image libraries such as STARE
provide open-access digital image data. Originally developed in
1975, STARE provides 397 ophthalmological images with a vari-
ety of diagnoses http://www.parl.clemson.edu/stare/). The DRIVE
database (http://www.isi.uu.nl/Research /Databases/DRIVE/) has
been established to facilitate comparative studies on segmenta-
tion of blood vessels in retinal images. The research community is
invited by them to test their algorithms on this database and share
the results with other researchers through the web site.

In addition, digital image processing research into DR could ben-
efit from the creation of a large training set of images that could be
accessed by investigators for evaluation of their systems. Current
data sharing initiatives endorsed by research councils and other
funders should facilitate the creation of such a database. Finally, the
authors recommend that the development of successful screening
systems for diabetic retinopathy would be greatly facilitated by the
adoption of a standard format for reporting of such studies such as
that recommended by Bossuyt et al. [75], who presented the STARD
statement for the reporting of studies analyzing the performance
of diagnostic tests.
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