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Abstract

Choice of a classification algorithm is generally based upon a number of factors, among which are availability of software, ease of use,

and performance, measured here by overall classification accuracy. The maximum likelihood (ML) procedure is, for many users, the

algorithm of choice because of its ready availability and the fact that it does not require an extended training process. Artificial neural

networks (ANNs) are now widely used by researchers, but their operational applications are hindered by the need for the user to specify the

configuration of the network architecture and to provide values for a number of parameters, both of which affect performance. The ANN also

requires an extended training phase.

In the past few years, the use of decision trees (DTs) to classify remotely sensed data has increased. Proponents of the method claim that it

has a number of advantages over the ML and ANN algorithms. The DT is computationally fast, make no statistical assumptions, and can

handle data that are represented on different measurement scales. Software to implement DTs is readily available over the Internet. Pruning of

DTs can make them smaller and more easily interpretable, while the use of boosting techniques can improve performance.

In this study, separate test and training data sets from two different geographical areas and two different sensors—multispectral Landsat

ETM+ and hyperspectral DAIS—are used to evaluate the performance of univariate and multivariate DTs for land cover classification.

Factors considered are: the effects of variations in training data set size and of the dimensionality of the feature space, together with the

impact of boosting, attribute selection measures, and pruning. The level of classification accuracy achieved by the DT is compared to results

from back-propagating ANN and the ML classifiers. Our results indicate that the performance of the univariate DT is acceptably good in

comparison with that of other classifiers, except with high-dimensional data. Classification accuracy increases linearly with training data set

size to a limit of 300 pixels per class in this case. Multivariate DTs do not appear to perform better than univariate DTs. While boosting

produces an increase in classification accuracy of between 3% and 6%, the use of attribute selection methods does not appear to be justified in

terms of accuracy increases. However, neither the univariate DT nor the multivariate DT performed as well as the ANN or ML classifiers

with high-dimensional data.
D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The past three decades have seen continuing develop-

ments in the area of pattern recognition. Research into

algorithmic aspects of pattern recognition has proceeded

alongside the development of instruments that are capable

of producing high volumes of data, including images with

increasingly finer spatial and spectral resolution. After 30

years of satellite remote sensing of the Earth’s land surface,
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users of remotely sensed data now have access to sophisti-

cated statistical and neural/connectionist algorithms for both

fuzzy and hard classifications of their data (Mather, 1999;

Schowengerdt, 1997).

Both the statistical and neural/connectionist approaches

have limitations. Statistical methods rely on the assumption

that the probabilities of class membership can be modelled

by a specific probability density function. In most cases, the

Gaussian distribution is chosen, as it is characterised by

first- and second-order statistics, that is, the class mean

vectors and class covariance matrices. If training set size is

fixed, then the precision of the estimates of the elements of

the sample class mean vector and sample class covariance
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matrix declines as the number of features (dimensions)

increases, so that one might expect the performance of the

classifier to degrade as the number of features increases. The

assumption that the data in each class follow a multivariate

normal model restricts the analysis to interval or ratio scale

data.

Neural/connectionist methods appear to work well with

training data sets that are smaller in size than those required

for statistical procedures. On the other hand, network

training times can be lengthy, while choice of the design

of network architecture (in terms of numbers of hidden

layers and neurons per layer) and the values of the learning

rate parameters is not straightforward (Foody & Arora,

1997; Kavzoglu, 2001; Wilkinson, 1997). Unlike statistical

methods, the neural/connectionist approach makes no as-

sumptions concerning the statistical frequency distribution

of the data or the measurement scales of the features that are

used in the analysis. The most commonly used neural/

connectionist algorithm is the back-propagating multi-layer

perceptron (Wilkinson, 1997), which is used in this study.

Decision tree (DT) classifiers have not been as widely

used within the remote sensing community as either the

statistical or the neural/connectionist methods. The advan-

tages that decision trees offer include an ability to handle

data measured on different scales, lack of any assumptions

concerning the frequency distributions of the data in each of

the classes, flexibility, and ability to handle non-linear

relationships between features and classes (Friedl & Brod-

ley, 1997). In contrast to neural networks, decision trees can

be trained quickly, and are rapid in execution (Gahegan &

West, 1998). They can be used for feature selection/reduc-

tion as well as for classification purposes (Borak & Strahler,

1999). Finally, the analyst can interpret a decision tree. It is

not a ‘black box’, like the neural network, the hidden

workings of which are concealed from view.

Overall classification accuracy is used here to measure

the performance of the different methods. The level of

classification accuracy that is achieved in a particular case

depends on a number of factors, including the nature of the

classification problem in terms of the complexity of the

decision boundaries that separate the classes in feature space

(assuming that the classes are separable), the training sample

size, the adequacy of the training data in characterising the

properties of the chosen classes, the dimensionality of the

data, and the properties of the classifier used (Raudys and

Pikelis, 1980). We do not consider all of these problems in

this paper. However, the results of our analyses are inter-

nally comparable, as the same training and test data sets are

used for all three classifiers, for two dissimilar study areas

(Section 2). Thus, it is possible to examine both the relative

performance of the different classifiers and the consistency

of these comparisons between data sets with dissimilar

characteristics in terms of the terrain of the study area and

the nature of the imaging system used.

The paper is structured as follows. Section 2 describes

the two test data sets that are used in this study. Brief details
of the three classifiers are provided in Section 3. The effects

of training set size, data dimensionality, attribute selection

methods, pruning and boosting on the performance of the

DT classifier are considered in Section 4. A short compar-

ative analysis of the relative performance of the DT, arti-

ficial neural networks (ANNs), and maximum likelihood

(ML) classifiers is given in Section 5, which is followed by

a summary of conclusions.
2. Test data sets

Two contrasting data sets are used. The first is a

medium-resolution (Landsat ETM+) image of part of

Eastern England near the town of Littleport. This area is

relatively flat and low-lying, and is mainly devoted to

intensive arable agriculture. The image was collected on

19 June 2000. Seven main land cover types are identified,

namely, wheat, potato, sugar beet, onion, peas, lettuce, and

beans. Official field data printouts (which record the crop

or crops grown in each field) for the year 2000 were

collected from farmers and their representative agencies,

and other parts of the area were surveyed on the ground to

assemble the ground reference data. A subimage consisting

of 307 pixels (columns) by 330 pixels (rows) covering the

area of interest was extracted from the ETM+ image for

subsequent analyses. ETM+ band 6 (the thermal band) was

omitted.

Hyperspectral data acquired by the DAIS 7915 airborne

imaging spectrometer on 29th June 2000 form the second

test data set. The spatial resolution of DAIS data is 5 m, and

measurements are made in 72 spectral bands in the visible

and short-wave infrared regions of the spectrum. The study

area is located within the region of La Mancha Alta, which

covers an area of approximately 8000 km2 and is located to

the south of Madrid, Spain. The region contains semi-arid

wetland with some irrigated and dryland agriculture. Eight

different land cover types (wheat, water body, salt lake,

hydrophytic vegetation, vineyards, bare soil, pasture lands,

and built-up area) were identified. A subimage of size

512� 512 pixels covering the area of interest was extracted.

Of the 72 bands available in the visible and short-wave

infrared region, a subset comprising 65 bands was selected,

as visual inspection showed that seven bands suffered from

severe horizontal striping effects.

Random sampling methods were used to collect separate

training and test data sets in both study areas using ground

reference data generated from field observations and, in the

case of the Littleport study area, from official farm records.

The pixels collected by random sampling were divided into

two subsets, one of which was used for training and the

second for testing the classifiers, so as to remove any bias

resulting from the use of the same set of pixels for both

training and testing. Also, because the same test and training

data sets are used for each classifier, any differences result-

ing from sampling variations are avoided.



Fig. 1. A classification tree with four dimensional feature space and three

classes. The xi are feature values; a, b, c, d, and e are the thresholds and A,

B, and C are class labels.
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3. Methods

The maximum likelihood, multi-layer back-propagation

neural network, and decision tree procedures are used in this

study. A brief summary of the properties of each of these

classifiers is given in this section.

3.1. Maximum likelihood classifier

As usually implemented, the ML procedure is based on

the assumption that the members of each class follow a

Gaussian frequency distribution in feature space. ML is a

pixel-based method, and can be defined as follows: a pixel

with an associated observed feature vector x is assigned to

class cj of N classes if

gjðxÞ > gkðxÞ for all j p k; with j; k ¼ 1; . . . ;N :

For the multivariate Gaussian distribution, the discrimi-

nating function gk(x) is given by:

gkðxÞ ¼ lnðpðx j cjÞÞ ¼ lnŜk þ ðx � m̂kÞ
T Ŝ�1ðx � m̂kÞ

where m̂k andŜk are the sample mean vector and sample

covariance matrix for class k.

Implementation of the ML algorithm involves the esti-

mation of class mean vectors (m̂ k) and covariance matrices

(Ŝk ) from training data chosen from known examples of

each particular class. The function gi(x) is used to evaluate

the membership probability of an unknown pixel for class j.

The pixel is assigned to the class for which it has the highest

membership probability value.

3.2. Artificial neural network classifier

The most widely used artificial neural network model in

remote sensing applications is the back-propagating multi-

layer perceptron. Its design consists of one input layer, at

least one hidden layer, and one output layer. The hidden and

output layers are made up of sets of non-linear processing

units, or neurons, and the connections between neurons in

successive layers carry associated weights (Bishop, 1995).

Information is carried only in the forward direction, that is,

from input layer to the first hidden layer, or from a hidden

layer to a subsequent hidden or output layer. Non-linear

processing is performed by applying an activation function

to the summed inputs to each neuron. The network is trained

using back-propagation, which uses a gradient-descent al-

gorithm to minimise the error between the known label of

the training pixel and the label output by the network for

that pixel. Each member of a set of training pixels is

repeatedly presented to the network, and the error (measured

by the difference between the network output and the known

label of the training pixel) is propagated from the output

layer back to the input layer. The weights on the backward

path through the network are updated according to an
update rule and a learning rate. ANNs are not specified

solely by the characteristics of their processing units and the

selected training or learning rule (Paola & Schowengerdt,

1995). The network topology, that is, the number of hidden

layers and the number of neurons per layer, has a consid-

erable influence on performance. There is no clear guide to

the determination either of the network architecture or to the

choice of the initial values of user-supplied parameters that

control, for example, the performance of the error minimi-

sation procedure. The settings recommended by Kavzoglu

(2001) are used here.

3.3. Decision tree classifiers

Unlike conventional statistical and neural/connectionist

classifiers, which use all available features simultaneously

and make a single membership decision for each pixel, the

DT uses a multi-stage or sequential approach to the problem

of label assignment. The labelling process is considered to

be a chain of simple decisions based on the results of

sequential tests rather than a single, complex decision. Sets

of decision sequences form the branches of the DT, with

tests being applied at the nodes. The leaves (or branch

termini) represent labels (Fig. 1).

DT construction involves the recursive partitioning of a

set of training data, which is split into increasingly homo-

geneous subsets on the basis of tests applied to one or more

of the feature values. These tests are represented by nodes.

The univariate DT applies a test to a single feature at a time,

whereas the multivariate DT uses one or more features

simultaneously. Labels are assigned to terminal (leaf) nodes

by means of an allocation strategy, such as majority voting.

At one time, DTs were designed manually, using spectral

plots. In the past decade, automatic methods of decision tree

design have been developed. In this study, two univariate

DT algorithms, C4.5 and See5.0 (Quinlan, 1993, 1996), and



Fig. 2. Axis-parallel decision boundaries of a univariate decision tree.
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one multivariate algorithm, QUEST (Loh & Shih, 1997), are

used.

3.3.1. Univariate decision tree

A univariate DT is one in which the decision boundaries

at each node of the tree are defined by the outcome of a test

applied to a single feature that is evaluated at each internal

node (Swain & Hauska, 1977). On the basis of the test

outcome, the data are split into two or more subsets. Each

test is required to have a discrete number of outcomes. A

univariate DT classification proceeds by recursively parti-

tioning the input data until a leaf node is reached, and the

class label associated with that leaf node is then assigned to

the observation. The characteristics of the decision bound-

aries in a univariate DT are estimated empirically from the

training data. In the case of continuous data, a test of the

form xi>c is performed at each internal node of the DT,

where xi is a measurement in the feature space and c is a

threshold estimated from the distribution of the xi. The

value of c is estimated by using some objective measure

that maximises the dissimilarity or minimises the similarity

of the descendant nodes, using one feature at a time (Fig.

2). A number of attribute selection methods are described

in the literature. The most frequently used of these are the

information gain, the information gain ratio (Quinlan,

1993), the Gini index (Breiman, Friedman, Olshen, & Stone,

1984), and the chi-square measure Mingers (1989b). As

each test in univariate DT is based on a single feature, it is

restricted to a split through the feature space that is

orthogonal to the axis representing the selected feature.

3.3.2. Multivariate decision trees

If the locations of decision boundaries in feature space

can be properly defined only in terms of combinations of

features rather than sequences of single features, then the

univariate DT will perform poorly (Breiman et al., 1984;

Utgoff & Brodley, 1990). In such cases, the set of

allowable splits can be extended to include linear combi-

nations of features (Fig. 3). A set of linear discriminant

functions is estimated at each interior node of a multivar-

iate DT, with the coefficients for the linear discriminant

function at each interior node being estimated from the

training data. The splitting test at each node has the formPn
i¼1 aixiVc, where xi represents a vector of measurements

on the n selected features, a is a vector of coefficients of a

linear discriminant function, and c is a threshold value.

Brodley and Utgoff (1992) find that multivariate DTs are

more compact and able to produce more accurate classi-

fications than univariate DTs. The greater complexity of

multivariate relative to univariate DT algorithms introduces

a number of factors that affect their performance. First, any

of a number of different algorithms can be used to estimate

the splitting rule at internal nodes, and the relative perfor-

mance of these methods can differ depending on the nature

of the data and the complexity of the classification prob-

lem. Second, as the split at each internal node of a
multivariate DT is based on one or more features, so

several different algorithms may be used to perform feature

selection at each internal node within a multivariate DT

(Friedl & Brodley, 1997). These algorithms choose the

features to include in each test on the basis of the data

observed at a particular node, rather than selecting a

uniform set of features on which tests for the entire tree

are based.

It is also possible to use different classification algo-

rithms at different nodes of a DT classifier. This type of tree

is called a hybrid DT (Friedl & Brodley, 1997). Another

approach to the design of DT using Support Vector

Machines has also been proposed by Bennett and Blue

(1998).
4. Results

The aim of the present study is to evaluate the effect of

the following factors on the level of overall classification

accuracy achieved by the three classification algorithms

selected for this study:

� training data set size,
� dimensionality of the data set,
� attribute selection measures,
� pruning methods, and
� boosting techniques.

The effects of data dimensionality are evaluated using

DAIS hyperspectral data set for a test area in La Mancha

(test data set 2), while the multispectral Landsat ETM+ for

the Littleport test area (test data set 1) was used to assess the

impact of variations in the other factors. The salient char-



Fig. 3. Decision boundaries for a multivariate decision tree classifier.

Fig. 4. Variation of classification accuracy with increasing number of

training patterns using univariate decision tree classifier and ETM+data

(test data set 1, Littleport).
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acteristics of the two test data sets are summarised in

Section 2.

4.1. Effect of training set size

The characteristics of the data used to train a supervised

classifier have a considerable influence on the accuracy of

the resulting classification (Campbell, 1981). It is essential

that the number of classes is adequate to describe the land

cover of the study area, and that the training data provide a

representative description of each class. For the ML classi-

fier, an important requirement is that the number of pixels

included in the training data set for each class should be at

least 10–30 times the number of features (Mather, 1999).

The required training set size may therefore be large, and

will increase rapidly as the number of features increases to

avoid the so-called ‘‘Hughes phenomenon’’ (Hughes, 1967),

which shows decreasing classifier performance as the num-

ber of features increases for a constant training data set size.

Acquiring such large training sets may be difficult and

costly where a large number of classes is involved, or where

hyperspectral data are used. Consequently, some investiga-

tions may use a sample size that is smaller than the generally

accepted guideline for statistical classifiers such as ML. This

implies that the standard errors of the estimates of the

required parameters are larger than the recommended level,

and therefore, decision boundaries may be located incor-

rectly or imprecisely. Landgrebe (2000) considers further

the relationship between classification accuracy and the

problem of adequate class definition.

It has been suggested that ANN-based classifiers can

perform successfully using training data sets that are smaller

than those required to train statistical classifiers (Hepner et

al., 1990; Foody, McCulloch, & Yates, 1995). Nevertheless,

investigations of the effects of training set characteristics on

the performance of ANNs indicate that training data set size
has a substantial effect on classification accuracy (Foody &

Arora, 1997; Foody et al., 1995; Kavzoglu, 2001).

To evaluate the effects of training set size on classifica-

tion accuracy using a DT classifier, seven subsets of training

data for the first test area (Littleport, eastern England) were

formed by randomly sampling the set of available training

data. The numbers of pixels in each of these training data

subsets are 700, 1050, 1400, 1750, 2100, 2400, and 2700

pixels, respectively, with an equal number of pixels per class

for the seven classes, giving 100, 150, 200, 250, 300, 350,

and 400 pixels per class, respectively. A separate set of 2037

pixels was used for testing the classifier. The test set did not

include any pixels from the training data sets.

Fig. 4 shows the relationship between accuracy and

training set size using a univariate DT classifier. These

results indicate that the level of accuracy increases with the

size of the training set, and that the rate of increase in

classification accuracy with increasing training set size is

linear up to the fifth training data set, which contains 2100

pixels. As the training set size increases from 700 to 2100

pixels (i.e., 100–300 pixels per class), there is an increase in

classification accuracy, from 78.3% to 84.1%. However,

further increases in training set size, using the sixth and

seventh data sets, produced anomalous results, with the sixth

training data set producing a slight decrease in accuracy.

These results indicate that (i) the accuracy of a univariate

decision tree classifier improves as the size of the training set

is increased, but only up to a point, and (ii) these classifiers

do not require very large training sets to be effective. It

should be noted that our results do not concur with the

findings of Oates and Jenson (1997), who suggest that the

size of the training data set has no effect on classification

accuracy. Our findings indicate that—for the test problem

that we addressed—a training data set size of 300 samples

per class provided an adequate description of land cover

variations. The figure of 300 samples is problem-specific,

and should not be used as a guide for other applications.
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A second experiment was carried out to study the

response of a multivariate DT classifier to increasing train-

ing data set size. The same set of training and test data as

used in the previous example was employed, to ensure

compatibility (Fig. 5). Again classification accuracy in-

creases with training set size. This increase is almost linear

up to fourth data set (700–1750 pixels). Accuracy then

starts to fall with the fifth and sixth data sets, but rises again

so that the highest classification accuracy is achieved by the

seventh data set.

These results indicate that the level of classification

accuracy achieved by a multivariate DT increases with the

size of the training set, but not in a systematic way. The

behaviour of the multivariate classifier was found to be

rather less predictable than that of the univariate DT as the

number of training patterns increases beyond a certain limit.

It is evident also that the level of classification accuracy

associated with the multivariate classifier is no higher than

that of the univariate classifier for this data set. As training

time is always greater with a multivariate decision tree

classifier, we conclude that the univariate DT classifier is

adequate for this type of data.

4.2. Dimensionality of the feature space

Hyperspectral data are characterised by their high dimen-

sionality. An important characteristic of statistical classifiers

is that the properties of each class are modelled using a

probability density function. Usually the Gaussian density is

chosen, as it can be described in terms of a mean vector and

a variance–covariance matrix, both of which are estimated

from the sample data for each class. The standard errors of

the k estimates of the elements of the class mean vector and

the k(k� 1)/2 elements of the variance–covariance matrix

for each class depend on the ratio between the number of

dimensions, k, and the number of pixels included in the

training data set for that class. As the dimensionality of the
Fig. 5. Variation of classification accuracy with increasing number of

training patterns using a multivariate decision tree classifier and ETM+data

(test data set 1, Littleport).
data increases, so more training data are required to provide

acceptable estimates of the statistical parameters. If the

number of training data pixels is inadequate, which may

be the case with hyperspectral data, then parameter estima-

tion becomes inaccurate as standard errors of the estimate

become larger (Hsieh & Landgrebe, 1998). Increasing the

number of spectral bands provides more information to be

used in discriminating between classes but, for statistical

classifiers at least, this information is only useful if the

number of training data increases proportionately.

The purpose of this part of the study is to assess the

behaviour of univariate and multivariate DT classifiers as

the number of features increases while training data set size

is kept constant. As DT classifiers do not use all features

simultaneously for training, and also because class separa-

bility in high-dimensional data may be a function of a

combination of features rather than a single feature, the

performance of the DT classifier is compared with that of

the ML and NN classifiers, which use all available features

simultaneously in the labelling process. A fixed-size train-

ing set composed of 2000 pixels (giving 250 pixels per

class) and a test data set of 3800 pixels were employed.

Both were drawn from the second (La Mancha) hyper-

spectral test data set.

Fig. 6 shows the levels of overall classification accuracy

obtained using the ML, NN, and DT classifiers. The number

of features was initially set to 5 (the first five DIAS bands)

and then increased by 5 at each iteration, so that the first

experiment is based on DAIS bands 1–5, the second on

bands 1–10, and so on. The level of accuracy associated

with the univariate DT classifier is higher than the

corresponding values for the NN, ML, and multivariate

DT classifiers for the first data set in which five features

were used, but the classification accuracy of the univariate

DT declines as the number of feature increases. A possible

reason for this behaviour may be that the performance of the

univariate DT classifier is affected by the number of training

samples, and the use of a large training sample to subdivide

feature space may result in a very large and complex

decision tree. The univariate DT classifier uses a test applied

to the value of a single attribute at each branch or node in

the tree. As the number of features increases, it becomes

more likely that two or more features are interrelated. This is

especially true of hyperspectral data, with contiguous and

narrow wavebands. Class structure becomes more depen-

dent on combinations of features as a result of these

correlations, thus making it difficult for a univariate DT

classifier to perform well.

Further investigation using a multivariate DT suggests

that it achieves a lower level of classification accuracy using

high-dimensional data than either the ML or the ANN

classifiers. The complexity of higher dimensional feature

spaces, with intercorrelated features, may be too great to

allow the DT classifier—either univariate or multivariate—

to perform well in comparison to either the ML or the NN

classifiers.



Fig. 7. Variation of accuracy with different attribute selection measures

using ETM+data (test data set 1, Littleport) with 2700 training pixels.

Fig. 6. Classification accuracies using DAIS hyperspectral data (test data set 2, La Mancha) with fixed training set of 250 pixels/class and increasing number of

features.
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4.3. Attribute selection measures

There are many approaches to the problem of selecting

the set of attributes to be used for DT induction, and these

approaches have been studied in detail by Borgelt, Geb-

hardt, and Kruse (1996), Breiman et al. (1984), Kononenko

and Hong (1997), Mingers (1989b), Murthy, Kasif, and

Salzberg, (1994), and Quinlan (1993). Some approaches use

measures of the ‘‘goodness of split’’ (Brieman et al., 1984)

while other approaches attempt to minimise the ‘‘impurity’’

of the training data.

An impurity function measures the heterogeneity of a set

of observations. It records its lowest value for a pure set and

its highest value for a maximally impure set. Impurity

functions are used in selecting the feature to be used to

further split the data at the current node of a DT. The best

attribute for splitting is selected by examining how well

each candidate feature separates the data into the various

classes.

The purpose of this section is to examine these various

attribute selection measures in terms of their comparative

performance for land cover classification. A univariate DT

classifier is used, together with error-based pruning (Section

4.4). Four attribute selection measures are employed: the

information gain, the information gain ratio (Quinlan,

1993), the Gini index (Breiman et al., 1984), and the chi-

square measure (Mingers, 1989b). A total of 2700 training

patterns and 2037 testing patterns was used in this experi-

ment. The result shown in Fig. 7 essentially confirms the

findings of Breiman et al. (1984) that the level of classifi-

cation accuracy is not seriously affected by the choice of

attribute selection measure. Except for the information gain

ratio, the accuracy level obtained for each selection measure

is almost identical, and the increase in accuracy resulting

from the use of the information gain ratio is less than 1%.
4.4. Pruning methods

DT classifiers attempt to divide the training data into

subsets that should contain only a single class. The result of

this procedure is often a very large and complex tree. In

most cases, fitting a DT until all leaves contain data for a

single class may overfit to the noise in the training data, as

some training samples may not be members of the class that

they purport to represent. If the training data contain any

errors, then overfitting the tree to the data in this manner can

lead to poor performance on unseen cases (Breiman et al.,

1984). To reduce the impact of this problem, the original

tree can be pruned.

Simplification involves the removal of those parts of the

tree that do not contribute to classification accuracy on

unseen cases, thus producing a less complex and more



Table 1

(a) Effect of pruning on tree size (complexity) and classification error using ETM+data (test site 1, Littleport)

Evaluation on training data Evaluation on test data

Before pruning After pruning Before pruning After pruning

Tree size Error (%) Tree size Error (%) Tree size Error (%) Tree size Error (%)

713 1.6 231 8.6 713 17.6 231 15.7

Classification accuracy is defined as (100� error)%. Results indicate that pruning reduces the size of decision tree as well as error on test data. In this case,

the size of the pruned tree is f 33% of the original tree size. The error level of the independent test data set drops by f 2%.

(b) Classification accuracy from boosted and unboosted decision trees using ETM+data from test site 1 (Littleport) with a total of 2700 training pixels and

seven classes

Accuracy

(%)

Kappa value

Unboosted decision tree 84.24 0.816

Boosted decision tree 88.46 0.865

Fig. 8. Variation of classification accuracy with different pruning methods

using ETM+data (test data set 1) with 2700 training pixels.
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comprehensible tree. There are two ways in which a decision

tree classifier can be modified to produce a simpler tree:

� Stop the subdivision of the training data before the tree is

complete, or
� Remove retrospectively some part of the tree structure by

recursive partitioning.

The first approach, sometimes called stopping or pre-

pruning, has the advantage that time is not wasted in

assembling a structure that is not used in the final simplified

tree. This method looks for the best way of splitting a data set

in terms of a criterion such as information gain or error

reduction. If the value of the criterion falls below some

threshold, further division of the data set is rejected. The

problem with this approach lies in the formulation of an

appropriate stopping rule (Breiman et al., 1984). If the

threshold value is set too high, then division is terminated

before the benefits of subsequent splits become evident,

while too low a threshold value results in little simplification

of the tree.

In the second approach, the tree is allowed to grow to its

full extent. This overfitted tree is then pruned. More

computation time is required to build those parts of the tree

that are subsequently discarded, but this cost is offset

against benefits resulting from a more thorough exploration

of possible partitions.

Pruning a DT will cause it to misclassify more of the

training data (Table 1). Thus, the leaves of the pruned tree

will not necessarily contain training data from a single class.

Instead, there will be a class distribution specifying, for each

class, the probability that a training data sample at the leaf

belongs to that class. Two families of techniques to predict

error rates of a tree are available. In the first family, the error

rates of the tree and its subtrees are predicted by using a set

of test data that is separate from the training data. Because

these test cases were not used in the building of the tree, the

estimate of classification accuracy that is obtained from

them will be unbiased and, if enough data are available, the
estimate will also be reliable. In the second approach, the

training data themselves are used to predict these error rates.

This section describes the results of an experiment that

investigates the effect of various pruning methods on

classification accuracy. Five different pruning methods are

used with the information gain ratio as the attribute selection

measure in a univariate DT classifier (C4.5). The pruning

methods employed are: reduced error pruning (REP), pes-

simistic error pruning (PEP), and error-based pruning

(EBP), all proposed by Quinlan (1987, 1993); critical value

pruning (CVP) proposed by Mingers (1989a); and cost-

complexity pruning (CCP) proposed by Breiman et al.

(1984). Fig. 8 shows the impact on classification accuracy

of the different pruning methods.

The performance of the REP method is worst, with a

classification accuracy of 81.4%. The reason for this could

be the requirement of a separate data set for pruning, a

conclusion also suggested by Esposito, Malerba, and Semer-

aro (1997). PEP gives the highest accuracy of 82.9%;



Table 2

Results from maximum likelihood and neural network classifiers using

ETM+data (test data set 1) with 2700 training pixels and seven classes

Classifier Accuracy (%) Kappa value

Maximum likelihood (ML) 82.9 0.80

Neural network (NN) 85.1 0.83
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however, Esposito et al. (1997) note that the introduction of

a continuity correction in the estimation of error rate has no

theoretical justification and such a factor is improperly

compared to an error rate, which may lead to either under-

pruning or overpruning of the tree. The performance of CVP

is affected by the choice of critical value set to prune a tree.

CCP uses a separate data set or a cross-validation approach

to pruning, and a pruned sub-tree is selected by minimising

a complexity factor over a set of pruned sub-trees. Gelfand,

Ravishankar, and Delp (1991) suggest that this set of sub-

trees may not include the optimum sub-tree. Finally, EBP

uses training data for pruning the tree. These results suggest

that the choice of a suitable pruning method is an important

factor in the design of a DT classifier in comparison to the

attribute selection measures, as the availability of a suffi-

cient number of training data elements is always a problem.

Our conclusion is that EBP, which gives an overall classi-

fication accuracy of 82.8%, is the preferred method. This

conclusion is not based exclusively on the relatively small

increase in the level of classification accuracy that results

from the use of pruning; it also takes into account the

benefits deriving from the reduction in tree size and the

simplification of the tree, which can improve interpretation

and understanding.

4.5. Boosting

Boosting is a method of improving the performance of a

‘‘weak’’ classifier. In essence, this improvement is achieved
Fig. 9. Classification accuracies using DAIS hyperspectral data (test data set 2, L

number of features. The classification accuracies obtained with a boosted univari
by weighting the individual elements of the training data

set. The weights are initially set to be equal. Comparison

of the classifier output and the known label of each

element of the training data should reveal cases in which

elements of the training data have been classified incor-

rectly. These incorrectly classified training data elements

are given an increased weight, and the classifier is run

again. The increased weighting of the ‘‘difficult cases’’

forces the classifier to focus on these cases. A method similar

to boosting is described by Jackson and Landgrebe (2001).

We used the AdaBoost M1 algorithm (Freund & Schapire,

1996) together with the C4.5 decision tree software (Quin-

lan, 1993).

Classification accuracies and Kappa values obtained

from unboosted and boosted DTs, estimated using sets of

2700 training and 2037 separate test data for test area 1

(Littleport) are shown in Table 2. The boosted DT classi-

fications were estimated using 14 iterations of the base

decision tree algorithm. The number of boosting iterations

was varied from 2 to 20 but there was little change in

classification accuracy beyond 14 iterations, and the degree

of accuracy improvement achieved through the use of

boosting starts to stabilise after eight iterations. It appears

that 10–15 boosting iterations are sufficient to achieve an

improvement in classification accuracy for this type of data.

The result also concurs with the conclusions of studies using

non-remote sensing data. Quinlan (1996) concludes that

about 10 iterations is the optimum number, and that little

is gained by performing additional boosting runs. We noted

an increase of more than 4% in the level of classification

accuracy following boosting, using test data set 1, which is a

small increase in comparison to the results reported by

Quinlan (1996) and Muchoney et al. (2000). Although the

level of improvement is small, it should be borne in mind

that even small percentage increases are difficult to generate

when the overall classification accuracy level exceeds 80%.
a Mancha) with a fixed training set of 250 pixels/class and an increasing

ate decision tree are also shown.
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The results shown in Fig. 9 and Table 2 suggest that

boosting also improves the classification accuracy of a

univariate DT by about 4% when used with hyperspectral

data (test data set 2). We can, therefore, conclude that

boosting is a useful technique for improving the perfor-

mance of the DT classifier for land cover classification

studies.
5. Comparison of decision tree, maximum likelihood

(ML), and neural network (NN) classifiers

In this section, the results achieved by the univariate DT

in classifying the test data described in Section 2 are

compared with those produced by ML and ANN classifiers.

The aim of this comparison is to determine whether the high

accuracy values that we achieved with the DT are classifier

dependent. We used a standard back-propagation neural

classifier, with a single hidden layer having 26 nodes. The

number of nodes and the values of the user-defined inputs to

the network were set using the guidelines suggested by

Kavzoglu (2001). Table 3 shows the accuracies achieved by

the ML and NN classifiers with test data set 1 (ETM+),

using the same training and test data as in previous sections.

The results presented in Tables 2 and 3 show that the DT

classifier produces a higher level of classification accuracy

than does the ML classifier, and its performance is compa-

rable to that of an ANN, even without boosting. After

boosting, the level of classification accuracy achieved by

the DT improves by about 3.3%. This may not be a large

increase, but it does indicate that the boosted DT produces

approximately the same level of classification accuracy as

an ANN, while both ANN and DT methods give a higher

accuracy than the ML classifier. However, the DT classifier

requires only the choice of attribute selection and pruning

methods, while the use of the ANN involves decisions

concerning the type of network, the network architecture,

and the initial values of various parameters. It is usually the

case also that the training time required by an ANN

classifier is lengthy, as noted below.

The performance of boosted and unboosted DT trees

using hyperspectral data (test data set 2) is compared with

the accuracies achieved by using ML and NN classifiers in

Fig. 9. The results of this part of the study suggest that, even

after boosting, the performance of the DT classifier is below
Table 3

Calculated Z values for comparison between different classification systems

Shaded values indicate improvements in the performance of first-named

classifier at the 95% confidence level (critical value of Z= 1.96). Unshaded

value indicates that both classifiers perform equally well. WB means

‘‘without boosting’’ and B means ‘‘boosting’’ a decision tree classifier.
that of the ML and NN classifiers, indicating that—although

boosting may help in increasing the performance of a weak

base classifier—the performance of the boosted DT classi-

fier depends fundamentally on the performance of the base

DT classifier, which is relatively poor when a large number

of features are used. The results presented in Fig. 9 show

that the ML classifier consistently produces the highest level

of classification accuracy for data sets including 20–25

features or more. Below this point, the boosted DT is only

slightly better. To check these results, the experiment was

repeated using a different random sample of training data of

the same size as that used previously. The results are very

close to those achieved by the first experiment, and the same

conclusions are suggested, namely, that beyond a data

dimensionality of 20–25, both the ML and ANN classifiers

produce higher overall classification accuracies than the

boosted or unboosted univariate DT.

Cost is an important consideration in operational appli-

cations of remote sensing, and training a classifier often

represents a significant proportion of these costs. The

training time for the ANN classifier was about 58 CPU

minutes on a Sun dual-processor workstation, compared to

0.7 CPU seconds using a personal computer with a Pentium

II processor for the unboosted DT. Even with the use of

boosting, the decision tree classifier required about 7.1 CPU

seconds on a slow Pentium II machine to perform 14

boosting iterations, which is still far less than the time taken

to train the ANN classifier. In terms of design effort, training

time requirements, and classification accuracy, the ML

method offers advantages over the ANN and DT procedures

when the data are measured on an interval or ratio scale.
6. Conclusions

The main aim of this study is to assess the utility of DT

classifiers for land cover classification using multispectral

and hyperspectral data, and to compare the performance of

the DT classifier with that of the ANN and ML classifiers.

The specific objectives are to study the behaviour of

decision tree classifiers with changes in training data size,

choice of attribute selection measures, pruning methods, and

boosting. The results presented above suggest several con-

clusions. First, the performance of both univariate and

multivariate DT is always affected by the size of the training

data set. This is a predictable outcome, but the use of

common training and test data sets shows that the behaviour

of the univariate DT is more systematic than that of the

multivariate DT and that, in the case of the univariate DT, at

least 300 pixels per training class were needed to provide

the most suitable combination of classification accuracy and

sample size. The study also concludes that DT classifiers are

not recommended for high-dimensional data sets. Other

results indicate that the choice of an appropriate pruning

method has a positive effect in improving classification

accuracy, while the use of attribute selection measures was



Table 4

Classification accuracies achieved using 2000 training and 3800 test data

with all 65 features of the hyperspectral data set (test data set 2, La Mancha)

Classifier used

ML NN Univariate

decision tree

Boosted univariate

decision tree

Accuracy (%) 94.7 92.5 86.0 90.5
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found not to be important. The use of boosting is recom-

mended; in this study, it resulted in an improvement in

classification accuracy of about 3–4%, at little cost in

computer time or complexity of use.

Studies carried out using ML and ANN classifiers for the

same data sets indicate that the DT performs slightly better

than the ML classifier, using ETM+ data. The performance

of the ANN is also slightly better than that of the unboosted

univariate decision tree classifier for ETM+ data, but the

difference is not statistically significant, as shown in Table

4. A number of studies (Foody & Arora, 1997; Kavzoglu,

2001) suggest that the performance of an ANN classifier

depends on the values of a number of parameters that the

user must define in advance, while the performance of a

univariate DT classifier depends on the pruning method

used in the design of the tree. The training time for a neural

classifier is large when compared to that of the univariate

decision tree classifier. Even with the use of boosting, the

training time for the decision tree is still short compared to

the demands of the ANN classifier, but the performance of

the boosted decision tree is better than that of the ANN

classifiers.

When hyperspectral data are used, the performance of

both univariate and multivariate DT classifiers declines as

the number of features increases, while both the ML and

ANN classifiers produce overall classification accuracy

values that are higher than those produced by the DT

classifier (both boosted and unboosted). This may be due

to the combination of the requirement of a large training

data set size and the use of a single feature to split the

training data. As a result of correlations among the features

forming a hyperspectral data set, it may be the case that a

combination of features is needed for an informed decision

to be made. The probable reason for the poor performance

of the multivariate DT classifier on high-dimensional data

could be a result of local feature selection, suggesting that

the use of DT classifiers with high-dimensional data is

limited. Finally, results also show that boosting of a univar-

iate DT classifier did not work well for high-dimensional

data.

In summary, the ML procedure performs adequately or

better in the experiments we have performed, using both

multispectral ETM+ data and hyperspectral DAIS data. The

DT method may produce a slightly higher level of classifi-

cation accuracy than ML for multispectral data, but for data

dimensionalities greater than 20–25, the unboosted DT

gives a much lower accuracy (95% for ML and 86% for
the unboosted DT, using 55 or more features). These results

were confirmed by a second experiment. It follows that the

ML algorithm is preferred unless there are particular reasons

for believing that data do not follow a Gaussian (or, at least,

a unimodal) distribution. As noted in Section 4.1, the

adequacy of the training and test data sets in characterising

the variability present in each of the classes is possibly a

more important factor in determining classification accuracy

than the nature of the classification algorithm that is used,

especially for cleanly structured data.
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